首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene coding for human nerve growth factor (hNGF) was constructed for expression under control of the trp promoter in E. coli. The plasmid pTRSNGF contained a synthetic hNGF gene fused, in frame, to the region encoding the beta-lactamase signal peptide. The plasmid pTRLNGF contained the same coding sequence as hNGF attached downstream from the N-terminal fragment of the trp L gene. E. coli cells harboring pTRSNGF produced an amount of hNGF constituting 4% of the total cellular protein, and removed the beta-lactamase signal peptide. The mature protein hNGF was biologically active in the PC12h bioassay for neurite outgrowth. This biological activity was comparable to that of authentic mouse NGF. E. coli cells harboring pTRLNGF produced an amount of fusion protein hNGF constituting 25% of the total cellular protein. Although the fusion protein hNGF formed inclusion bodies in cells, dissolved fusion protein hNGF was active in neurite outgrowth from PC12h cells.  相似文献   

2.
Immunocytochemical techniques were used to identify human proinsulin chimeric protein in cytoplasmic inclusion bodies of genetically modified Escherichia coli. Antibodies to proinsulin chimeric protein (human proinsulin coupled at its amino-terminus to a portion of the E. coli tryptophan E gene product) were localized in E. coli using post-embedding staining with protein A-peroxidase labelling for transmission electron microscopy. The observable distribution of the labelled antibody was limited to that portion of the E. coli cytoplasm occupied by inclusion bodies. The localization of human peptides as insoluble masses within the bacterial cytoplasm has important implications in relation to the synthesis, recovery and purification of pharmacologically useful substances produced through the application of recombinant DNA technology.  相似文献   

3.
猪囊尾蚴CE18重组蛋白的复性纯化及抗原性鉴定   总被引:1,自引:0,他引:1  
猪囊尾蚴CE18重组蛋白(rCE18)在大肠杆菌表达后形成包涵体, 为了获得高纯度的、有生物活性的rCE18, 本研究采用超声破碎菌体, 0.2%、2% DOC(脱氧胆酸钠)逐次洗涤包涵体及0.9% SKL(十二烷基肌氨酸钠)溶解包涵体后, 利用透析与凝胶过滤层析技术相结合对rCE18进行复性和纯化。同时, 采用GST-FF亲和柱层析及SDS-PAGE胶回收蛋白两种方法纯化rCE18, 比较三者的纯化效果。并通过间接ELISA检测复性蛋白的生物学活性。结果表明: 经透析与凝胶层析复性纯化后的rCE18蛋白的纯度可达到60%以上, 活性回收率为41.3%, 间接ELISA证实, 复性后的rCE18蛋白能特异性识别猪囊虫阳性血清, 检测敏感性高达97.2%, 与全囊虫抗原检测的符合率为100%。本试验初步建立了猪囊尾蚴rCE18包涵体纯化及复性的有效方法, 为猪囊尾蚴rCE18蛋白的诊断应用奠定了基础。  相似文献   

4.
Escherichia coli small heat shock proteins, IbpA/B, function as molecular chaperones and protect misfolded proteins against irreversible aggregation. IbpA/B are induced during overproduction of recombinant proteins and bind to inclusion bodies in E. coli cells. We investigated the effect of DeltaibpA/B mutation on formation of inclusion bodies and biological activity of enzymes sequestered in the aggregates in E. coli cells. Using three different recombinant proteins: Cro-beta-galactosidase, beta-lactamase and rat rHtrA1 we demonstrated that deletion of the ibpA/B operon did not affect the level of produced inclusion bodies. However, in aggregates containing IbpA/B a higher enzymatic activity was detected than in the IbpA/B-deficient inclusion bodies. These results confirm that IbpA/B protect misfolded proteins from inactivation in vivo.  相似文献   

5.
Fed-batch cultures of recombinant E. coli HB101 harboring expression plasmid pTRLBT1 or pTREBT1, with acetate concentration monitoring, are investigated to obtain high cell density and large amounts of human epidermal growth factor (hEGF). The expression plasmid pTRlBT1 contains a synthetic hEGF gene attached downstream of the N-terminal fragment of the trp L gene preceded by the trp promoter. The expression plasmid pTREBT1 contains the same coding sequence attached downstream of the N-terminal fragment of the trp E gene preceded by the trp promoter, trp L gene, and attenuator region. E. coli harboring pTREBT1 produces 0.56 mg/L hEGE and immediately degrades it. On the other hand E. coli harboring pTRLBT1 produces 6.8 mg/L hEGF and does not decompose it. Prominent inclusion bodies are observed in E. coli cells harboring pTRLBT1 using an election microscope. To Cultivate E. coli harboring pTRLBT1, a fed-batch culture system, divided into a cell growth step and an hEGF production step, is carried out. The cells grow smoothly without acetate-induced inhibition. Cell concentration and hEGF quantity reach the high values of 21 g/L and 60 mg/L, respectively.  相似文献   

6.
Inclusion body formation occurs naturally in prokaryotic cells, but is particularly common when heterologous foreign proteins are overexpressed in bacterial systems. The plant disease virus protein CMV 3a (cucumber mosaic virus movement protein) and the 56 kDa Orientia tsutsugamushi (OT56) protein (an outer membrane protein), which causes tsutsugamushi disease, were expressed in Escherichia coli, and found to form inclusion bodies. Confocal laser scanning microscopy revealed that these inclusion bodies are localized at the cellular poles within E. coli. Cells expressing inclusion bodies appeared to be interconnected, and divided abnormally. The clustered cells exhibited biofilm-like characteristics in that the interior cells of the community were protected by the antibiotic resistance of the outer cells. We compared the number of colony-forming units in inclusion body-forming versus non-forming E. coli to demonstrate the effects of lysozyme, sonication or antibiotic treatment. E. coli clustering provided significantly improved protection against cell disruption/lysis by physical and biochemical stress. This is the first report that shows that abnormal cell division caused by inclusion body formation can cause cellular clustering, resulting in improved resistance to stress in vitro.  相似文献   

7.
Cumulative sedimentation analysis of Escherichia coli debris size   总被引:1,自引:0,他引:1  
A new method to measure Escherichia coli cell debris size after homogenization is presented. It is based on cumulative sedimentation analysis under centrifugal force, coupled with Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of sedimented proteins. The effects that fermentation and homogenization conditions have on the resulting debris distributions were investigated using this method. Median debris size decreased significantly from approximately 0.5 mum to 0.3 mum as the number of homogenization passes increased from 2 to 10. Under identical homogenization conditions, uninduced host cells in stationary phase had a larger debris size than exponential cells after 5 homogenizer passes. This difference was not evident after 2 or 10 passes, possibly because of confounding intact cells and the existence of a minimum debris size for the conditions investigated. Recombinant cells containing protein inclusion bodies had the smallest debris size following homogenization. The method was also used to measure the size distribution of inclusion bodies. This result compared extremely well with an independent determination using centrifugal disc photosedimentation (CDS), thus validating the method. This is the first method that provides accurate size distributions of E. coli debris without the need for sample pretreatment, theoretical approximations (e.g. extinction coefficients), or the separation of debris and inclusion bodies prior to analysis. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioang 55: 556-564, 1997.  相似文献   

8.
In previous parts of this study we developed procedures for the high‐efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two‐stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion‐body stability is promoted by the addition of 15 mM 2‐hydroxyethyldisulfide (2‐HEDS), also known as oxidized β‐mercaptoethanol, to the permeabilization buffer (6 M urea + 3 mM ethylenediaminetetraacetate [EDTA]). 2‐HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion‐body fraction by centrifugation. In the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two‐stage process yielded an 81% (w/w) recovery of the recombinant protein Long‐R3‐IGF‐I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot‐scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 455–460, 1999.  相似文献   

9.
We developed a novel method for the expression and purification of recombinant human PEDF in Escherchia coli, and proved it to be simple, convenient, and cheap to obtain this protein with biological activity intact. Human PEDF gene, amplified by PCR from human retinal cNDA library, was cloned into the prokaryotic expression vector pET-22b(+). The recombinant pET-22b(+)/PEDF was expressed in E. coli strain BL21(DE3). The recombinant protein showed a molecular weight of about 50 kDa and was mainly in the form of inclusion bodies according to SDS-PAGE and Western blot analysis. The insoluble rPEDF was solublized from inclusion bodies by denaturation using 6 M urea, purified by His-tag affinity chromatography, and renatured to natural structure by dialysis in the presence of DTT. The rPEDF could cell-type-specifically inhibit HRCEC proliferation in a dose-dependent manner and induce HRCEC apoptosis.  相似文献   

10.
Inclusion bodies are described in recombinant E. coli cells harboring plasmid for the expression of a synthetic gene coding for human calcitonin tetramer. The inclusion bodies are visualized by electron microscopy and the protein is identified by immuno-gold technique, using antibodies against synthetic human calcitonin. The diameter of the inclusion bodies is 1 micron on the average.  相似文献   

11.
M G Bolyard  S T Lord 《Gene》1988,66(2):183-192
Human fibrinogen gamma chain has been expressed intact at high levels in Escherichia coli. The construction of the expression plasmid, p253, is described. Synthesis of the recombinant protein is isopropyl-beta-D-thiogalactopyranoside-dependent and is driven by the tac promoter. Western analysis of E. coli lysates demonstrates a novel protein of approx. 45 kDa which cross-reacts with antisera to human fibrinogen gamma chains. The protein is not soluble in common E. coli lysis buffers and becomes soluble in 6 M guanidine.HCl or 6 M urea. Initial insolubility is due to interchain disulfide bond formation and to noncovalent interactions. Induced cells examined by phase-contrast microscopy contain dense inclusion bodies. A known function of the gamma chains of human fibrinogen is the clumping of Staphylococcus aureus Newman D2C cells [Hawiger et al., Biochemistry (1982) 1407-1413]. We demonstrate that suspensions of recombinant gamma chains retain the ability to clump cells from this strain of S. aureus.  相似文献   

12.
We cloned EF-Tu from Streptomyces aureofaciens on a pET plasmid and overproduced it using the T7 RNA polymerase system in Escherichia coli. Streptomyces EF-Tu represented more than 40% of the total cell protein and was stored mostly in inclusion bodies formed apically at both ends of E. coli cells. Analysis of the inclusion bodies by transmission and scanning electron microscopy did not reveal any internal or surface ultrastructures. We developed the method for purification of S. aureofaciens EF-Tu from isolated inclusion bodies based on the ability of the protein to aggregate spontaneously. EF-Tu present in inclusion bodies was not active in GDP binding. Purified protein showed a similar charge heterogeneity as EF-Tu isolated from the mycelium of S. aureofaciens and all of the isoforms reacted with EF-Tu antibodies. All isoforms also reacted with monoclonal antibodies against O-phosphoserine and O-phosphothreonine.  相似文献   

13.
The extracellular portion of the alpha chain of the human high-affinity IgE receptor (FcepsilonRIalpha) was expressed as inclusion bodies in Escherichia coli. In immunoblot analysis, two bands were reactive to human IgE and mouse anti-human FcepsilonRIalpha monoclonal antibodies. N-terminal sequencing showed that the two bands were equivalent to the soluble FcepsilonRIalpha with a methionine residue at the N-terminus (Met-1-172) and 23-172, in which the N-terminal 22 residues of the soluble FcepsilonRIalpha have been removed, possibly by degradation in E. coli cells. IgE-binding to CHO cells expressing FcepsilonRI was inhibited by the addition of the recombinant products prepared by the refolding procedure from inclusion bodies. The system for the expression of soluble human FcepsilonRIalpha in E. coli presented in this study and its further improvement would be useful for the production of the protein as a potent therapeutic and for analysis of the IgE-FcepsilonRIalpha interaction.  相似文献   

14.
Formation of fluorescent proteins was explored after incubation of recombinant apo-subunits of phycobiliprotein R-phycoerythrin with phycoerythrobilin chromophore. Alpha and beta apo-subunit genes of R-phycoerythrin from red algae Polisiphonia boldii were cloned in plasmid pET-21d(+). Hexahistidine-tagged alpha and beta apo-subunits were expressed in Escherichia coli. Although expressed apo-subunits formed inclusion bodies, fluorescent holo-subunits were constituted after incubation of E. coli cells with phycoerythrobilin. Holo-subunits contained both phycoerythrobilin and urobilin chromophores. Fluorescence and differential interference contrast microscopy showed polar location of holo-subunit inclusion bodies in bacterial cells. Cells containing fluorescent holo-subunits were several times brighter than control cells as found by fluorescence microscopy and flow cytometry. The addition of phycoerythrobilin to cells did not show cytotoxic effects, in contrast to expression of proteins in inclusion bodies. In an attempt to improve solubility, R-phycoerythrin apo-subunits were fused to maltose-binding protein and incubated with phycoerythrobilin both in vitro and in vivo. Highly fluorescent soluble fusion proteins containing phycoerythrobilin as the sole chromophore were formed. Fusion proteins were localized by fluorescence microscopy either throughout E. coli cells or at cell poles. Flow cytometry showed that cells containing fluorescent fusion proteins were up to 10 times brighter than control cells. Results indicate that fluorescent proteins formed by attachment of phycoerythrobilin to expressed apo-subunits of phycobiliproteins can be used as fluorescent probes for analysis of cells by microscopy and flow cytometry. A unique property of these fluorescent reporters is their utility in both properly folded (soluble) subunits and subunits aggregated in inclusion bodies.  相似文献   

15.
LIGHT is a membrane-bound protein that belongs to the tumor necrosis factor (TNF) superfamily ligands. In this study, we established an effective strategy for producing a bioactive soluble form of LIGHT (sLIGHT), an extracellular region (Ile??-Val2??) of human LIGHT. Because sLIGHT was expressed as inclusion bodies in Escherichia coli, we investigated reagents that enhance the renaturation of sLIGHT from the inclusion bodies. Interestingly, L-cysteine in the denaturation buffer containing 3.5 M guanidine hydrochloride significantly improved the renaturation efficiency of sLIGHT. The effect of L-cysteine was synergistically enhanced by L-arginine in the refolding buffer. The optimal concentrations of L-cysteine and L-arginine in the denaturation and refolding buffers were 8 mM and 0.8 M, respectively. With these buffers, approximately 90 mg of sLIGHT was purified from 200 g of frozen E. coli cells. sLIGHT thus obtained significantly induced apoptosis in the WiDr human colon adenocarcinoma cell line at nanomolar concentrations, the same amount of sLIGHT that was produced by Sf9 insect cells. These results suggest that L-cysteine in the denaturation buffer enhances the renaturation of recombinant proteins from inclusion bodies in E. coli.  相似文献   

16.
The human interferon alpha2b (hu-IFNalpha2b) gene was cloned in Escherichia coli JM109(DE3) and the recombinant protein was expressed as cytoplasmic inclusion bodies (IB). The present work discusses the recovery of hu-IFNalpha2b IB from the E. coli cells. An optimized protocol is proposed based on the sequential evaluation of recovery steps and parameters: (i) cell disruption, (ii) IB recovery and separation from cell debris, (iii) IB washing, and (iv) IB solubilization. Parameters such as hu-IFNalpha2b purity and recovery yield were measured after each step. The optimized recovery protocol yielded 60% of hu-IFNalpha2b with a purity of up to 80%. The protein was renatured at high concentration after recovery and it was found to display biological activity.  相似文献   

17.
Expression of archaeal proteins in soluble form is of importance because archaeal proteins are usually produced as insoluble inclusion bodies in Escherichia coli. In this study, we investigated the use of soluble fusion tags to enhance the solubility of two archaeal proteins, d-gluconate dehydratase (GNAD) and 2-keto-3-deoxy-D-gluconate kinase (KDGK), key enzymes in the glycolytic pathway of the thermoacidophilic archaeon Sulfolobus solfataricus. These two proteins were produced as inclusion bodies in E. coli when polyhistidine was used as a fusion tag. To reduce inclusion body formation in E. coli, GNAD and KDGK were fused with three partners, thioredoxin (Trx), glutathione-S-transferase (GST), and N-utilization substance A (NusA). With the use of fusion-partners, the solubility of the archaeal proteins was remarkably enhanced, and the soluble fraction of the recombinant proteins was increased in this order: Trx>GST>NusA. Furthermore, In the case of recombinant KDGKs, the enzyme activity of the Trx-fused proteins was 200-fold higher than that of the polyhistidine-fusion protein. The strategy presented in this work may contribute to the production of other valuable proteins from hyperthermophilic archaea in E. coli.  相似文献   

18.
Yan F  Qian M  Yang F  Cai F  Yuan Z  Lai S  Zhao X  Gou L  Hu Z  Deng H 《Biochemistry. Biokhimii?a》2007,72(6):664-671
Human PNAS-4 was identified as a novel pro-apoptotic protein in mammalian cells. Here we report the cloning, expression, purification, and antibody production of a PNAS-4 homolog (named xPNAS-4) from Xenopus laevis, an extensively used model organism in exploring gene functions during embryonic development. Recombinant histidine-tagged xPNAS-4 protein was expressed in Escherichia coli as insoluble inclusion bodies. The inclusion bodies were subsequently dissolved in 8 M urea and purified to near homogeneity by Ni2+ affinity chromatography. The resulting denatured protein was refolded by stepwise dilution of urea concentration via dialysis. This procedure yielded about 4 mg refolded protein per liter of E. coli culture with a purity of 95%. The purified protein was identified by liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS) and used to raise anti-xPNAS-4 polyclonal antibodies that were suitable for detecting the expression of PNAS-4 in X. laevis embryos by Western blotting. The availability of recombinant protein and specific polyclonal antibodies will provide a valuable tool in studying apoptotic mechanisms of this protein. To our knowledge, this is the first report to demonstrate the presence of PNAS-4 in X. laevis.  相似文献   

19.
Native Clostridium botulinum gene coding for type A neurotoxin has been used to construct recombinant derivatives coding separately for L and H polypeptide chains of the toxin. The gene derivatives have been cloned into an expression vector pET28b in E. coli BL21 (DE3) cells. The recombinant L and H proteins seem to be the major individual proteins after IPTG induction of the recombinant cells. Each of the proteins has been accumulated only in inclusion bodies. The recombinant L chain (but not H chain) has been successfully resolubilized. Each of the proteins contains six His residues on the N terminus which allows purification on Ni-agarose columns with high yield. No toxic effect has been observed for both L and H chains after injection of 10 micrograms of recombinant preparations purified from inclusion bodies. Moreover, the injection resulted in an increase in the titer of specific antibodies which protected mice from 1 DLM of type A native botulinum neurotoxin. Hence, the recombinant neurotoxin protein derivatives which are present in E. coli inclusion bodies can be a source of material for producing diagnostic and therapeutic sera against type A botulinum neurotoxin.  相似文献   

20.
应用疏水层析对大肠杆菌表达的人重组白细胞介素-4(rhIL-4)进行了纯化,含有rhIL-4的包涵体,经洗涤、变性、复性后,以Butyl-Sepharose层析,得到了高纯度的rhIL-4.纯度达97%;回收率为32%;比活性为2×10~7U/mg,讨论了rhIL-4疏水层析的条件,并对不同的方法纯化白细胞介素-4进行了比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号