首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Oh J  Fraser NW 《Journal of virology》2008,82(7):3530-3537
Previous work has determined that there are nucleosomes on the herpes simplex virus (HSV) genome during a lytic infection but that they are not arranged in an equally spaced array like in cellular DNA. However, like in cellular DNA, the promoter regions of several viral genes have been shown to be associated with nucleosomes containing modified histone proteins that are generally found associated with actively transcribed genes. Furthermore, it has been found that the association of modified histones with the HSV genome can be detected at the earliest times postinfection (1 h postinfection) and increases up to 3 h postinfection. However from 3 h to 6 h postinfection (the late phase of the replication cycle), the association decreases. In this study we have examined histone association with promoter regions of all kinetic classes of genes. This was done over the time course of an infection in Sy5y cells using sucrose gradient sedimentation, bromodeoxyuridine labeling, chromatin immunoprecipitation assays, Western blot analysis, trypsin and DNase digestion, and quantitative real-time PCR. Because no histones were detected inside HSV type 1 capsids, the viral genome probably starts to associate with histones after being transported from infecting virions into the host nucleus. Promoter regions of all gene classes (immediate early, early, and late) bind with histone proteins at the start of viral gene expression. However, after viral DNA replication initiates, histones appear not to associate with newly synthesized viral genomes.  相似文献   

3.
Chromatin control of herpes simplex virus lytic and latent infection   总被引:1,自引:0,他引:1  
Herpes simplex viruses (HSV) can undergo a lytic infection in epithelial cells and a latent infection in sensory neurons. During latency the virus persists until reactivation, which leads to recurrent productive infection and transmission to a new host. How does HSV undergo such different types of infection in different cell types? Recent research indicates that regulation of the assembly of chromatin on HSV DNA underlies the lytic versus latent decision of HSV. We propose a model for the decision to undergo a lytic or a latent infection in which HSV encodes gene products that modulate chromatin structure towards either euchromatin or heterochromatin, and we discuss the implications of this model for the development of therapeutics for HSV infections.  相似文献   

4.
5.
6.
J P Weir  K R Steffy  M Sethna 《Gene》1990,89(2):271-274
A herpes simplex virus type 1 (HSV-1) insertion vector, pGal8, was designed for analysis of herpesvirus promoters during virus infection. This vector contains a multiple cloning site (MCS) positioned at the 5' end of the lacZ gene for the insertion of promoter sequences. The MCS and lacZ are flanked by sequences from the HSV-1 thymidine kinase encoding gene (tk) to direct homologous recombination into the tk locus of the viral genome. The utility of this vector is demonstrated by construction and comparison of recombinant viruses that express lacZ from the promoters of the genes encoding glycoprotein C, glycoprotein H and glycoprotein E.  相似文献   

7.
Infection of cells by herpes simplex virus (HSV) can lead to either lytic, productive infection or nonlytic, latent infection. The factors influencing this infection pathway decision are largely unknown. Thymidine kinase-negative mutant viruses can establish latent infection in neurons of mouse trigeminal ganglia but do not replicate productively in these cells. We show that during the early stages of establishment of latency by these mutants, expression of viral lytic genes is drastically reduced or undetectable as assayed by in situ hybridization. Thus, establishment of latent infection by HSV can occur despite severely restricted levels of lytic gene expression. This suggests that the block to productive replication during establishment of latent infection by HSV occurs before or early during the expression of alpha genes.  相似文献   

8.
9.
10.
Regulation of herpes simplex virus gene expression.   总被引:9,自引:0,他引:9  
J P Weir 《Gene》2001,271(2):117-130
  相似文献   

11.
12.
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.  相似文献   

13.
Burch AD  Weller SK 《Journal of virology》2004,78(13):7175-7185
Herpes simplex virus type 1 (HSV-1) encodes a portal protein that forms a large oligomeric structure believed to provide the conduit for DNA entry and exit from the capsid. Chaperone proteins often facilitate the folding and multimerization of such complex structures. In this report, we show that cellular chaperone proteins, components of the 26S proteasome, and ubiquitin-conjugated proteins are sequestered in discrete foci in the nucleus of the infected cell. The immediate-early viral protein ICP0 was shown to be necessary to establish these foci at early times during infection and sufficient to redistribute chaperone molecules in transfected cells. Furthermore, we found that not only is the portal protein, UL6, localized to these sites during infection, but it is also a substrate for ubiquitin modification. Our results suggest that HSV-1 has evolved an elegant mechanism for facilitating protein quality control at specialized foci within the nucleus.  相似文献   

14.
Intrauterine herpes simplex virus infection   总被引:6,自引:0,他引:6  
Neonatal herpes simplex virus (HSV) infection usually is the consequence of intrapartum infection, with disease onset between 5 and 15 days of life. More recently, intrauterine HSV infection has been identified. Intrauterine infection is apparent within the first 24-48 hr of life and is associated with skin vesicles/scarring, chorioretinitis, and/or hydraencephaly. The recognition that babies with these findings can have disease caused by HSV should prompt enhanced physician awareness in the evaluation of newborns with suspected intrauterine infection. The frequency of intrauterine infection appears to be about 5% of all babies with neonatal HSV infection.  相似文献   

15.
16.
17.
RNA interference (RNAi) is an antiviral mechanism that is activated when double-stranded RNA is cleaved into fragments, called short interfering RNA (siRNA), that prime an inducible gene silencing enzyme complex. We applied RNAi against a herpes simplex virus type 1 (HSV-1) gene, glycoprotein E, which mediates cell-to-cell spread and immune evasion. In an in vitro model of infection, human keratinocytes were transfected with siRNA specific for glycoprotein E and then infected with wild-type HSV-1. RNAi-mediated gene silencing reproduced the small plaque phenotype of a gE-deletion mutant virus. The specificity of gene targeting was demonstrated by flow cytometry and Northern blot analyses. Exogenous siRNA can suppress HSV-1 glycoprotein E expression and function during active infection in vitro through RNAi. This work establishes RNAi as a genetic tool for the study of HSV and provides a foundation for development of RNAi as a novel antiviral therapy.  相似文献   

18.
19.
Histones interact with herpes simplex virus type 1 (HSV-1) genomes and localize to replication compartments early during infections. However, HSV-1 genomes do not interact with histones in virions and are deposited in nuclear domains devoid of histones. Moreover, late viral replication compartments are also devoid of histones. The processes whereby histones come to interact with HSV-1 genomes, to be later displaced, remain unknown. However, they would involve the early movement of histones to the domains containing HSV-1 genomes and the later movement away from them. Histones unbind from chromatin, diffuse through the nucleoplasm, and rebind at different sites. Such mobility is upregulated by, for example, phosphorylation or acetylation. We evaluated whether HSV-1 infection modulates histone mobility, using fluorescence recovery after photobleaching. All somatic H1 variants were mobilized to different degrees. H1.2, the most mobilized, was mobilized at 4 h and further so at 7 h after infection, resulting in increases in its "free" pools. H1.2 was mobilized to a "basal" degree under conditions of little to no HSV-1 protein expression. This basal mobilization required nuclear native HSV-1 genomes but was independent of HSV-1 proteins and most likely due to cellular responses. Mobilization above this basal degree, and increases in H1.2 free pools, however, depended on immediate-early or early HSV-1 proteins, but not on HSV-1 genome replication or late proteins. Linker histone mobilization is a novel consequence of cell-virus interactions, which is consistent with the dynamic interactions between histones and HSV-1 genomes during lytic infection; it may also participate in the regulation of viral gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号