首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites--two for zinc, one for magnesium, and one for calcium ion--that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210-228 and 250-297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease.  相似文献   

2.
Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.  相似文献   

3.
Tensin is a cytoskeletal protein that links integrins to the actin cytoskeleton at sites of cell-matrix adhesion. Here we describe the crystal structure of the phosphotyrosine-binding (PTB) domain of tensin1, and show that it binds integrins in an NPxY-dependent fashion. Alanine mutagenesis of both the PTB domain and integrin tails supports a model of integrin binding similar to that of the PTB-like domain of talin. However, we also show that phosphorylation of the NPxY tyrosine, which disrupts talin binding, has a negligible effect on tensin binding. This suggests that tyrosine phosphorylation of integrin, which occurs during the maturation of focal adhesions, could act as a switch to promote the migration of tensin-integrin complexes into fibronectin-mediated fibrillar adhesions.  相似文献   

4.
The pharmacophore of the human C5a anaphylatoxin.   总被引:1,自引:2,他引:1       下载免费PDF全文
We have determined which amino acids contribute to the pharmacophore of human C5a, a potent inflammatory mediator. A systematic mutational analysis of this 74-amino acid protein was performed and the effects on the potency of receptor binding and of C5a-induced intracellular calcium ion mobilization were measured. This analysis included the construction of hybrids between C5a and the homologous but unreactive C3a protein and site-directed mutagenesis. Ten noncontiguous amino acids from the structurally well-defined 4-helix core domain (amino acids 1-63) and the C-terminal arginine-containing tripeptide were found to contribute to the pharmacophore of human C5a. The 10 mostly charged amino acids from the core domain generally made small incremental contributions toward binding affinity, some of which were independent. Substitutions of the C-terminal amino acid Arg 74 produced the largest single effect. We also found the connection between these 2 important regions to be unconstrained.  相似文献   

5.
Two atypical inhibitors of the dopamine transporter, benztropine, used in the treatment of Parkinson's disease, and bupropion, used as an antidepressant, show very different psychostimulant effects when compared with another inhibitor, cocaine. Taking advantage of the differential sensitivity of the dopamine and the norepinephrine transporters (DAT and NET) to benztropine and bupropion, we have used site-directed mutagenesis to produce gain-of-function mutants in NET which demonstrate that Ala279 in the trans-membrane domain 5 (TM5) and Ser359 in the TM7 of DAT are responsible for the higher sensitivity of DAT to both bupropion and benztropine. Substitution of these two DAT residues into the NET background does not alter the potency of NET-selective inhibitors, such as desipramine. The results from experiments examining the ability of DAT-selective inhibitors to displace [3H]nisoxetine binding in NET gain-of-function mutants suggest that Ser359 contributes to the initial binding of the inhibitor, and that Ala279 may influence subsequent steps involved in the blockade of translocation. Thus, these studies begin to identify residues that are important for the unique molecular interactions of benztropine and bupropion with the DAT, and that ultimately may contribute to the distinct behavioral actions of these drugs.  相似文献   

6.
The lactose permease of Escherichia coli (LacY) is a highly dynamic membrane transport protein, while the Cys154 → Gly mutant is crippled conformationally. The mutant binds sugar with high affinity, but catalyzes very little translocation across the membrane. In order to further investigate the defect in the mutant, fluorescent maleimides were used to examine the accessibility/reactivity of single-Cys LacY in right-side-out membrane vesicles. As shown previously, sugar binding induces an increase in reactivity of single-Cys replacements in the tightly packed periplasmic domain of wild-type LacY, while decreased reactivity is observed on the cytoplasmic side. Thus, the predominant population of wild-type LacY in the membrane is in an inward-facing conformation in the absence of sugar, sugar binding induces opening of a hydrophilic pathway on the periplasmic side, and the sugar-binding site is alternatively accessible to either side of the membrane. In striking contrast, the accessibility/reactivity of periplasmic Cys replacements in the Cys154 → Gly background is very high in the absence of sugar, and sugar binding has little or no effect. The observations indicate that an open hydrophilic pathway is present on the periplasmic side of the Cys154 → Gly mutant and that this pathway is unaffected by ligand binding, a conclusion consistent with findings obtained from single-molecule fluorescence and double electron-electron resonance.  相似文献   

7.
Key charged residues in Cu,Zn superoxide dismutase (Cu,Zn SOD) promote electrostatic steering of the superoxide substrate to the active site Cu ion, resulting in dismutation of superoxide to oxygen and hydrogen peroxide. Lys-136, along with the adjacent residues Glu-132 and Glu-133, forms a proposed electrostatic triad contributing to substrate recognition. Human Cu,Zn SODs with single-site replacements of Lys-136 by Arg, Ala, Gln, or Glu or with a triple-site substitution (Glu-132 and Glu-133 to Gln and Lys-136 to Ala) were made to test hypotheses regarding contributions of these residues to Cu,Zn SOD activity. The structural effects of these mutations were modeled computationally and validated by the X-ray crystallographic structure determination of Cu,Zn SOD having the Lys-136-to-Glu replacement. Brownian dynamics simulations and multiple-site titration calculations predicted mutant reaction rates as well as ionic strength and pH effects measured by pulse-radiolytic experiments. Lys-136-to-Glu charge reversal decreased dismutation activity 50% from 2.2 × 109 to 1.2 × 109 M−1 s−1 due to repulsion of negatively charged superoxide, whereas charge-neutralizing substitutions (Lys-136 to Gln or Ala) had a less dramatic influence. In contrast, the triple-mutant Cu,Zn SOD (all three charges in the electrostatic triad neutralized) surprisingly doubled the reaction rate compared with wild-type enzyme but introduced phosphate inhibition. Computational and experimental reaction rates decreased with increasing ionic strength in all of the Lys-136 mutants, with charge reversal having a more pronounced effect than charge neutralization, implying that local electrostatic effects still govern the dismutation rates. Multiple-site titration analysis showed that deprotonation events throughout the enzyme are likely responsible for the gradual decrease in SOD activity above pH 9.5 and predicted a pKa value of 11.7 for Lys-136. Overall, Lys-136 and Glu-132 make comparable contributions to substrate recognition but are less critical to enzyme function than Arg-143, which is both mechanistically and electrostatically essential. Thus, the sequence-conserved residues of this electrostatic triad are evidently important solely for their electrostatic properties, which maintain the high catalytic rate and turnover of Cu,Zn SOD while simultaneously providing specificity by selecting against binding by other anions. Proteins 29:103–112, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Alpha 1,3-fucosyltransferases (FucT) share a conserved amino acid sequence designated the alpha 1,3 FucT motif that has been proposed to be important for nucleotide sugar binding. To evaluate the importance of the amino acids in this motif, each of the alpha 1,3 FucT motif amino acids was replaced with alanine (alanine scanning mutagenesis) in human FucT VI, and the resulting mutant proteins were analyzed for enzyme activity and kinetically characterized in those cases in which the mutant protein had sufficient activity. Two of the mutant proteins were inactive, six had less than 1% of wild-type activity, and four had approximately 10-50% of wild-type enzyme activity. Three of the mutant proteins with significant enzyme activity had substantially larger Km (5 to 15 times) for GDP-fucose than FucT VI wild-type enzyme. The fourth mutant protein with significant enzyme activity (S249A) had a Km at least 10 times larger than wild-type FucT VI for the acceptor substrate, with only a slightly larger (2-3 times) Km for GDP-fucose. Thus mutation of any of the amino acids within the alpha 1,3 FucT motif to Ala affects alpha 1,3-FucT activity, and substitution of Ala for some of the alpha 1,3 FucT motif amino acids results in proteins with altered kinetic constants for both the acceptor and donor substrates. Secondary structure prediction suggests a helix-loop-helix fold for the alpha 1,3 FucT motif, which can be used to rationalize the effects of mutations in terms of 3D structure.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET.  相似文献   

10.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

11.
Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants’ mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5?Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.  相似文献   

12.
Pellequer JL  Chen SW 《Proteins》2006,65(1):192-202
The key issue for disulfide bond engineering is to select the most appropriate location in the protein. By surveying the structure of experimentally engineered disulfide bonds, we found about half of them that have geometry incompatible with any native disulfide bond geometry. To improve the current prediction methods that tend to apply either ideal geometrical or energetical criteria to single three-dimensional structures, we have combined a novel computational protocol with the usage of multiple protein structures to take into account protein backbone flexibility. The multiple structures can be selected from either independently determined crystal structures for identical proteins, models of nuclear magnetic resonance experiments, or crystal structures of homology-related proteins. We have validated our approach by comparing the predictions with known disulfide bonds. The accuracy of prediction for native disulfide bonds reaches 99.6%. In a more stringent test on the reported engineered disulfide bonds, we have obtained a success rate of 93%. Our protocol also determines the oxido-reduction state of a predicted disulfide bond and the corresponding mutational cost. From the energy ranking, the user can easily choose top predicted sites for mutagenesis experiments. Our method provides information about local stability of the engineered disulfide bond surroundings.  相似文献   

13.
We report here the crystal structure of a trehalose-6-phosphate phosphatase-related protein (T6PP) from Thermoplasma acidophilum, TA1209, determined by the dual-wavelength anomalous diffraction (DAD) method. T6PP is a member of the haloacid dehalogenase (HAD) superfamily with significant sequence homology with trehalose-6-phosphate phosphatase, phosphoserine phosphatase, P-type ATPases and other members of the family. T6PP possesses a core domain of known alpha/beta-hydrolase fold, characteristic of the HAD family, and a cap domain, with a tertiary fold consisting of a four-stranded beta-sheet with two alpha-helices on one side of the sheet. An active-site magnesium ion and a glycerol molecule bound at the interface between the two domains provide insight into the mode of substrate binding by T6PP. A trehalose-6-phosphate molecule modeled into a cage formed by the two domains makes favorable interactions with the protein molecule. We have confirmed that T6PP is a trehalose phosphatase from amino acid sequence, three-dimensional structure, and biochemical assays.  相似文献   

14.
Bacterial muconate lactonizing enzymes (MLEs) catalyze the conversion of cis,cis-muconate as a part of the beta-ketoadipate pathway, and some MLEs are also able to dehalogenate chlorinated muconates (Cl-MLEs). The basis for the Cl-MLEs dehalogenating activity is still unclear. To further elucidate the differences between MLEs and Cl-MLEs, we have solved the structure of Pseudomonas P51 Cl-MLE at 1.95 A resolution. Comparison of Pseudomonas MLE and Cl-MLE structures reveals the presence of a large cavity in the Cl-MLEs. The cavity may be related to conformational changes on substrate binding in Cl-MLEs, at Gly52. Site-directed mutagenesis on Pseudomonas MLE core positions to the equivalent Cl-MLE residues showed that the variant Thr52Gly was rather inactive, whereas the Thr52Gly-Phe103Ser variant had regained part of the activity. These residues form a hydrogen bond in the Cl-MLEs. The Cl-MLE structure, as a result of the Thr-to-Gly change, is more flexible than MLE: As a mobile loop closes over the active site, a conformational change at Gly52 is observed in Cl-MLEs. The loose packing and structural motions in Cl-MLE may be required for the rotation of the lactone ring in the active site necessary for the dehalogenating activity of Cl-MLEs. Furthermore, we also suggest that differences in the active site mobile loop sequence between MLEs and Cl-MLEs result in lower active site polarity in Cl-MLEs, possibly affecting catalysis. These changes could result in slower product release from Cl-MLEs and make it a better enzyme for dehalogenation of substrate.  相似文献   

15.
The techniques of phage-displayed homolog shotgun scanning, oligomer complementation, NMR secondary structure analysis, and computational docking provide a complementary suite of tools for dissecting protein-protein interactions. Focusing these tools on the interaction between the catalytic sub-unit of protein kinase A (PKAcat) and caveolin-1 scaffolding domain (CSD) reveals the first structural model for the interaction. Homolog shotgun scanning varied each CSD residue as either a wild-type or a homologous amino acid. Wild-type to homolog ratios from 116 different homologous CSD variants identified side-chain functional groups responsible for precise contacts with PKAcat. Structural analysis by NMR assigned an alpha-helical conformation to the central residues 84- 97 of CSD. The extensive mutagenesis data and NMR secondary structure information provided constraints for developing a model for the PKAcat-CSD interaction. Addition of synthetic CSD to phage-displayed CSD resulted in oligomer complementation, or enhanced binding to PKAcat. Together with previous experiments examining the interaction between CSD and endothelial nitric oxide synthase (eNOS), the results suggest a general oligomerization-dependent enhancement of binding between signal transducing enzymes and caveolin-1.  相似文献   

16.
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

17.
Vascular endothelial growth factor-D (VEGF-D) is a secreted protein that promotes tumor growth and metastatic spread in animal models of cancer. Expression of VEGF-D in prevalent human cancers was reported to correlate with lymph node metastasis and patient outcome—hence, this protein is a potential target for novel anticancer therapeutics designed to restrict tumor growth and spread. Here, we define the binding site in VEGF-D of a neutralizing antibody, designated VD1, which blocks the interaction of VEGF-D with its cell surface receptors vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 and is being used for the development of therapeutic antibodies. We show by peptide-based mapping and site-directed mutagenesis that the VD1 binding site includes the five residues 147NEESL151 and that immunization with a synthetic peptide containing this motif generates antibodies that neutralize VEGF-D. The tertiary structure of VEGF-D indicates that the 147NEESL151 epitope is located in the L2 loop of the growth factor, which is important for receptor binding. Mutation of any of these five residues influences receptor binding; for example, mutations to E148, which abolished binding to VD1, impaired the interaction with VEGFR-2 but enhanced binding to VEGFR-3. This structure/function study indicates that the VD1 binding epitope is part of the receptor binding site of VEGF-D, identifies a region of VEGF-D critical for binding of receptors and explains why VD1 does not bind other members of the VEGF family of growth factors.  相似文献   

18.
The crystal structures of the Vbeta17+ beta chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1(F104-->Y/C187-->S)) forms, respectively. These TCR beta chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 Vbeta17 closely resemble those of a Vbeta17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three Vbeta17 structures. At the side-chain level, conformational differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the Vbeta regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 Vbeta17, implying that there is considerable variability in the structures of very similar beta chains. Structural alignments also reveal a considerable variation in the Vbeta-Cbeta associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the Vbeta domains of known TCR structures indicate that there are significant similarities among Vbeta regions that are MAM-reactive, whereas there appear to be significant structural differences among those Vbeta regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.  相似文献   

19.
The structure of the scFv fragment FITC-E2, obtained from a naive phage antibody scFv library derived from human donors, was determined at 2.1 A resolution in the free form and at 3.0 A in the complexed form. The wild-type (wt) scFv binds fluorescein with a K(D) of 0.75 nM. The free scFv readily crystallizes by compacting its 18 amino acid-long CDR-H3, partially occluding the binding site and further blocking access by binding to the "bottom" of a neighboring scFv molecule with a cluster of exposed aromatic residues within CDR-H3. Only upon mutating one of the residues involved in this dominant crystal contact, an exposed tryptophan in the middle of CDR-H3, crystals of the complex could be obtained. A series of alanine mutants within the putative antigen binding site, covering a range of binding affinities, were used to relate macroscopic thermodynamic and kinetic binding parameters to single-molecule disruption forces measured by AFM. The effects of the mutations on the binding properties, particularly on the fraction of binding-competent molecules within the population, cannot be fully explained by changes in the strength of local interactions. The significant conformational change of CDR-H3 between the free and the liganded form illustrates the plasticity of the binding site. An accompanying study in this issue by Curcio and colleagues presents the molecular dynamics simulation of the forced unbinding experiments and explores possible effects of the mutations on the unbinding pathway of the hapten.  相似文献   

20.
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号