首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effects of 4 retinoids, namely, retinal (Ral), retinoic acid (RA), retinyl acetate (RAc), and retinyl palmitate (RP), and 3 carotenoid including beta-carotene (BCT), lycopene (LCP), and crocetin (CCT) on the growth and DNA synthesis of rat C-6 glioma cells were studied. All the retinoids and carotenoids caused reduction of plating efficiency and inhibition of the cellular growth. RA was the most potent inhibitor of plating efficiency, followed in decreasing order by RAc, Ral, LCP, RP, BCT, and CCT. The effects of various doses of retinoids and carotenoids on the inhibition of DNA synthesis were clearly demonstrated in the growing C-6 glioma cells, whereas negligible effects of these compounds on the RNA and protein synthesis were observed. These results suggested that retinoids or carotenoids are biologically active as anti-tumor agents against brain tumor cells in culture, while carotenoids appeared to be less active.  相似文献   

2.
3.
The requirement of the developing mammalian embryo for retinoic acid is well established. Retinoic acid, the active form of vitamin A, can be generated from retinol and retinyl ester obtained from food of animal origin, and from carotenoids, mainly β-carotene, from vegetables and fruits. The mammalian embryo relies on retinol, retinyl ester and β-carotene circulating in the maternal bloodstream for its supply of vitamin A. The maternal-fetal transfer of retinoids and carotenoids, as well as the metabolism of these compounds in the developing tissues are still poorly understood. The existing knowledge in this field has been summarized in this review in reference to our basic understanding of the transport and metabolism of retinoids and carotenoids in adult tissues. The need for future research on the metabolism of these essential lipophilic nutrients during development is highlighted. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

4.
Carotenoids and their metabolites are widespread and exert key biological functions in living organisms. In vertebrates, the carotenoid oxygenase BCMO1 converts carotenoids such as β,β-carotene to retinoids, which are required for embryonic pattern formation and cell differentiation. Vertebrate genomes encode a structurally related protein named BCDO2 but its physiological function remains undefined. Here, we show that BCDO2 is expressed as an oxidative stress-regulated protein during zebrafish development. Targeted knockdown of this mitochondrial enzyme resulted in anemia at larval stages. Marker gene analysis and staining for hemoglobin revealed that erythropoiesis was not impaired but that erythrocytes underwent apoptosis in BCDO2-deficient larvae. To define the mechanism of this defect, we have analyzed the role of BCDO2 in human cell lines. We found that carotenoids caused oxidative stress in mitochondria that eventually led to cytochrome c release, proteolytic activation of caspase 3 and PARP1, and execution of the apoptotic pathway. Moreover, BCDO2 prevented this induction of the apoptotic pathway by carotenoids. Thus, our study identifying BCDO2 as a crucial protective component against oxidative stress establishes this enzyme as mitochondrial carotenoid scavenger and a gatekeeper of the intrinsic apoptotic pathway.  相似文献   

5.
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.  相似文献   

6.
Carotenoids are long conjugated isoprenoid molecules derived mainly from plants and microbial organisms. They are highly diverse, with over 700 identified structures, and are widespread in nature. In addition to their fundamental roles as light-harvesting molecules in photosynthesis, carotenoids serve a variety of functions including visual and colouring pigments, antioxidants and hormone precursors. Although the functions of carotenoids are relatively well studied in plants and vertebrates, studies are severely lacking in insect systems. There is a particular dearth of knowledge on how carotenoids move among trophic levels, influence insect multitrophic interactions and affect evolutionary outcomes. This review explores the known and potential roles that carotenoids and their derivatives have in mediating the ecological interaction of insects with their environment. Throughout the review, we highlight how the fundamental roles of carotenoids in insect physiology might be linked to ecological and evolutionary processes.  相似文献   

7.
Vitamin A derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation with important clinical implications. All naturally occurring vitamin A derives by enzymatic oxidative cleavage from carotenoids with pro-vitamin A activity. To become biologically active, these plant-derived compounds must first be absorbed, then delivered to the site of action in the body, and metabolically converted to the real vitamin. Recently, molecular players of this pathway were identified by the analysis of blind Drosophila mutants. Similar genome sequences were found in vertebrates. Subsequently, these homologous genes were cloned and their gene products were functionally characterized. This review will summarize the advanced state of knowledge about the vitamin A biosynthetic pathway and will discuss biochemical, physiological, developmental and medical aspects of carotenoids and their numerous derivatives.  相似文献   

8.
Carotenoid biotechnology in plants for nutritionally improved foods   总被引:7,自引:1,他引:7  
Carotenoids participate in light harvesting and are essential for photoprotection in photosynthetic plant tissues. They also furnish non-photosynthetic flowers and fruits with yellow to red colors to attract animals for pollination and dispersal of seeds. Although animals can not synthesize carotenoids de novo , carotenoid-derived products such as retinoids (including vitamin A) are required as visual pigments and signaling molecules. Dietary carotenoids also provide health benefits based on their antioxidant properties. The main pathway for carotenoid biosynthesis in plants and microorganisms has been virtually elucidated in recent years, and some of the identified biosynthetic genes have been successfully used in metabolic engineering approaches to overproduce carotenoids of interest in plants. Alternative approaches that enhance the metabolic flux to carotenoids by upregulating the production of their isoprenoid precursors or interfere with light-mediated regulation of carotenogenesis have been recently shown to result in increased carotenoid levels. Despite spectacular achievements in the metabolic engineering of plant carotenogenesis, much work is still ahead to better understand the regulation of carotenoid biosynthesis and accumulation in plant cells. New genetic and genomic approaches are now in progress to identify regulatory factors that might significantly contribute to improve the nutritional value of plant-derived foods by increasing their carotenoid levels.  相似文献   

9.
In the past few years, considerable progress has been made in the investigation of the function of retinoids and carotenoids in higher animals and human including their role in cytoprotection. This has resulted in a considerable development in the analytical methods in the field of carotenoids and retinoids in biological materials. We have developed a method for the qualitative and quantitative determination of retinol and carotenoids in animal and human blood, using straight-phase liquid chromatography. Details of this work are presented jointly with a brief review of other analytical methods of these compounds.  相似文献   

10.
Selected antimutagenicity listings and profiles have been prepared from the literature on the antimutagenicity of retinoids and the carotenoid beta-carotene. The antimutagenicity profiles show: (1) a single antimutagen (e.g., retinol) tested in combination with various mutagens or (2) antimutagens tested against a single mutagen (e.g., aflatoxin B1). Data are presented in the profiles showing a dose range for a given antimutagen and a single dose for the corresponding mutagen; inhibition as well as enhancement of mutagenic activity is indicated. Information was found in the literature on the testing of selected combinations of 16 retinoids and carotenoids vs. 33 mutagens. Of 528 possible antimutagen-mutagen combinations, only 82 (16%) have been evaluated. The most completely evaluated retinoids are retinol (28 mutagens), retinoic acid and retinol acetate (7 mutagens each), and retinal and retinol palmitate (6 mutagens each). beta-Carotene is the most frequently tested carotenoid (15 mutagens). Of the remaining retinoids and carotenoids, 8 were evaluated in combination with a single mutagen and the other 2 were tested against only 2 or 3 mutagens. Most of the data on antimutagenicity in vitro are available for S. typhimurium strains TA98 and TA100. Substantial data also are available for sister-chromatid exchanges in vitro and chromosome aberrations in vitro and in vivo. This report emphasizes the metabolic as well as the antimutagenic effects of retinoids in vitro and in vivo.  相似文献   

11.
A reversed-phase gradient high-performance liquid chromatographic (HPLC) procedure, which utilizes gradient elution and detection by a photodiode-array detector, has been developed to analyze simultaneously very polar retinoids, such as 4-oxo-retinoyl-β-glucuronide, retinoyl β-glucuronide and 4-oxo-retinoic acid; polar retinoids, such as retinoic acid and retinol; nonpolar retinoids, such as retinyl esters; along with xanthophylls, monohydroxy carotenoids, hydrocarbon carotenoids, and tocopherols. The procedure has been applied to the simultaneous analysis of retinoids, carotenoids, and tocopherols present in human serum and liver, rat serum and tissues, and for carotenoids in a number of fruits and vegetables. Bilirubin present in human serum can also be simultaneously analyzed. By this gradient HPLC procedure, 3,4-didehydroretinyl ester (vitamin A2 ester) has been identified as a minor constituent in a human liver sample. Lycopene was identified as a major carotenoid in one specimen of papaya fruit, and 5,6,5′,6′-diepoxy-β-carotene was characterized as a major carotenoid in one specimen of mango fruit.  相似文献   

12.
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

13.
Consideration of recent data from diverse fields of biology permits the presentation of a general theory to explain the underlying mechanism and phylogenetic distribution of vertebrate regenerative capacity. It is suggested that dermal xanthophores, which are neural crest derivatives that contain carotenoid pigments, serve as storage reservoirs for proretinoids. At trauma, carotenoids are released and are converted to retinoids. The spatial distribution of xanthophores at the amputation site determines the amount of carotenoids released, which in turn determines the number of cells which will participate in regeneration and their degree of dedifferentiation. It also influences the proliferative and morphogenetic potential of the blastema. The theory is based on several factors. (1) The pluripotency of neural crest derivatives in general and that of chromatophores in particular; (2) The storage metabolism of carotenoids, especially their convertability to retinoids; (3) The known roles of retinoids in regeneration; (4) Evidence suggesting a relationship between carotenoids and regeneration in invertebrates; and (5) Dynamic characteristics of regenerating systems. The theory is experimentally testable with currently available technology. Specific review of data concerning urodele lens regeneration illustrates the theory. Evidence from amphibian limb regeneration is also presented. Methods of evaluation of other regeneration systems are outlined.  相似文献   

14.
When the fruitfly, Drosophila melanogaster, was reared on media deficient in carotenoids and retinoids, the level of 3-hydroxyretinal (the chromophore of fly rhodopsin) in the retina decreased to less than 1% compared with normal flies. The level of 3-hydroxyretinal increased markedly in flies that were given a diet supplemented with retinoids or carotenoids. The retinas of flies fed on all-trans retinoids and maintained in the dark predominantly contained the all-trans form of 3-hydroxyretinal, and showed no increase in the level of either the 11-cis isomer or the visual pigment. Subsequent illumination of the flies converted substantial amounts of all-trans 3-hydroxyretinal to its 11-cis isomer. The action spectrum of the conversion by illumination showed the optimum wavelength to be approximately 420 nm, which is significantly greater than the absorption maximum of free, all-trans 3-hydroxyretinal. Flies that were fed on carotenoids showed a rapid increase of the levels of 11-cis 3-hydroxyretinal and of visual pigment in the absence of light.  相似文献   

15.
Recent progress in structural studies of carotenoids in animals and plants   总被引:1,自引:0,他引:1  
About 750 naturally occurring carotenoids had been reported as of 2004. Furthermore, annually, more than 20 new structures of carotenoids are reported. Improvements of analytical instruments such as NMR, MS, HPLC, etc., have made it possible to perform the structural elucidation of very minor carotenoids in nature. Interesting new structural carotenoids can still be identified in aquatic animals and higher plants. The present paper provides a review of new structural carotenoids isolated from aquatic animals and higher plants by our group over the last five years.  相似文献   

16.
Carotenoid oxygenases: cleave it or leave it   总被引:10,自引:0,他引:10  
Carotenoid cleavage products (apocarotenoids) are widespread in living organisms and exert key biological functions. In animals, retinoids function as vitamins, visual pigments and signalling molecules. In plants, apocarotenoids play roles as hormones, pigments, flavours, aromas and defence compounds. The first step in their biosynthesis is the oxidative cleavage of a carotenoid catalysed by a non-heme iron oxygenase. A novel family of enzymes, which can cleave different carotenoids at different positions, has been characterized.  相似文献   

17.
18.
Retinoids are indispensable for the health of mammals, which cannot synthesize retinoids de novo. Retinoids are derived from dietary provitamin A carotenoids, like β-carotene, through the actions of β-carotene-15,15′-monooxygenase (BCMO1). As the substrates for retinoid-metabolizing enzymes are water insoluble, they must be transported intracellularly bound to cellular retinol-binding proteins. Our studies suggest that cellular retinol-binding protein, type I (RBP1) acts as an intracellular sensor of retinoid status that, when present as apo-RBP1, stimulates BCMO1 activity and the conversion of carotenoids to retinoids. Cellular retinol-binding protein, type II (RBP2), which is 56% identical to RBP1 does not influence BCMO1 activity. Studies of mice lacking BCMO1 demonstrate that BCMO1 is responsible for metabolically limiting the amount of intact β-carotene that can be absorbed by mice from their diet. Our studies provide new insights into the regulation of BCMO1 activity and the physiological role of BCMO1 in living organisms.  相似文献   

19.
20.
Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号