首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic relationships among major groups of passeriform birds were studied by analyses of nucleotide sequence data from two nuclear genes, c- myc and RAG-1. The results corroborated both the monophyly of the order Passeriformes, and the major dichotomy into oscine and suboscine passerines previously suggested based on syringeal morphology and DNA-DNA hybridizations. The representatives of the Old World suboscines (families Eurylaimidae, Philepittidae and Pittidae) formed a monophyletic clade. The New World suboscines clustered into two clades. The first contained Conopophaga (Conopophagidae), Furnarius (Furnariidae), Lepidocolaptes (Dendrocolaptidae), Thamnophilus (Formicariidae), and Rhinocrypta (Rhinocryptidae). Previously, the monophyly of this group has been inferred from their possession of a unique, "tracheophone" syrinx, and from DNA-DNA hybridisation data. The second clade of New World suboscines includes Gubernetes and Muscivora (Tyrannidae), Phytotoma (Phytotomidae), Tityra (Cotingidae) and Pipra (Pipridae). This group of families have been considered monophyletic based on morphology (although ambiguously) and DNA-DNA hybridisation. The sister group relationship of Tityra and Phytotoma supports the previously supposed cotingid affinity of Phytotoma . Nuclear DNA data also unambiguously group the lyrebirds Menura with the oscines.
The presented results from the analysis of nuclear DNA agree well with morphology and DNA-DNA hybridisation data. The precise age of the divergences studied herein are unknown but based on interpretations of the fossil record of passerine birds many of them might date back to the early Tertiary. The agreement between data from the nuclear DNA and other sources, along with the fact that neither of the studied genes showed sign of saturation, indicate the great potential of these two nuclear genes to resolve very old divergences in birds.  相似文献   

2.
Phylogenetic relationships of the lyrebirds are investigated using DNA sequence data. The aligned data matrix consists of 4027 bp obtained from three nuclear genes (c-myc, RAG-1 and myoglobin intron II) and two mitochondrial genes (cytochrome b and ND2). Both maximum-likelihood and parsimony analyses show that the lyrebirds unambiguously belong to the oscine radiation, and that they are the sister taxon to all other oscines. The results do not support the suggestion based on DNA-DNA hybridization data (Sibley and Ahlquist, 1990) that the treecreepers and bowerbirds are part of the lyrebird clade. Nevertheless, treecreepers and bowerbirds are sister taxa to all other oscines (except the lyrebirds) and may constitute a monophyletic group, although bootstrap support values for this clade are low. A major disagreement between the present analysis and that based on DNA-DNA hybridization data is that the Corvida (sensu Sibley and Ahlquist, 1990) and Passerida are not reciprocally monophyletic, as we find the latter group be nested within the Corvida. Also, the superfamilies Meliphagoidea and Corvoidea sensu, are not recovered as monophyletic in the present study. Within the oscine radiation, all taxa belonging to the earliest splits are confined to the Australo-Papuan region. This suggests strongly that the origins and early radiation of the oscines occurred in the southern supercontinent Gondwana. A new classification of the major groups of passerines is presented following from the results presented in the present study, as well as those published recently on analyses of sequence data from the nuclear c-myc and RAG-1 genes (Ericson et al., 2002; Irestedt et al., 2001).  相似文献   

3.
While the monophyly of the largest avian order Passeriformes as well as its suborders suboscines (Tyranni) and oscines (Passeri) is well established, lower phylogenetic relationships of this fast radiated taxon have been a continuous matter of debate, especially within the suborder oscines. Many studies analyzing phylogenetic relationships of the Passeriformes using molecular markers have been published, which led to a better resolved phylogeny. Conflicting hypotheses and still remaining uncertainties, especially within the Passerida, have repeatedly stimulated further research with additional new markers. In the present study we used a combination of established molecular markers (RAG‐1, RAG‐2, c‐myc) and the recently introduced ZENK. We accomplished phylogenetic analyses using maximum parsimony, maximum likelihood and Bayesian inference, both separately for all genes and simultaneously. To assess the phylogenetic utility of the different genes in avian systematics we analyzed the influence of each data partition on the phylogenetic tree yielded by the combined approach using partitioned Bremer support. Compared with the other single gene analyses, the ZENK trees exhibited by far the best resolution and showed the lowest amount of homoplasy. Our data indicate that this gene is—at least in passerines—suitable for inference of even old taxonomic splits. Our combined analysis yields well‐supported phylogenetic hypotheses for passerine phylogeny and apart from corroborating recently proposed hypotheses on phylogenetic relationships in the Passeriformes we provide evidence for some new hypotheses. The subdivision of the Passerida into three superfamilies, Sylvioidea, Passeroidea and Muscicapoidea, the first as sister to the two latter groups is strongly supported. We found evidence for a split between Paridae and the remaining Sylvioidea. © The Willi Hennig Society 2007.  相似文献   

4.
We sequenced 2.8 kb of the RAG-1 exon for most of the extant genera in the avian order Caprimulgiformes to investigate monophyly of the order and phylogeny within the traditional families. The order is not monophyletic: the Aegothelidae (owlet-nightjars) were the sister group of the Apodiformes (swifts and hummingbirds). There was no support for the monophyly of a clade containing the remaining families of Caprimulgiformes. However, the RAG-1 data strongly supported a relationship between the Podargidae (frogmouths) and Caprimulgidae (nightjars). Within the Caprimulgidae, the Australasian genus Eurostopodus was sister to the rest of the family, which in turn was composed of four major clades, three of which were restricted to the New World and primarily to the Neotropics. The Old World caprimulgids form a monophyletic clade embedded within the New World taxa; consequently, most Old World nightjars are probably the result of a single expansion out of the Neotropics. The genus Caprimulgus was not found to be monophyletic. Several species in the Caprimulgidae have both elevated heterozygosity and high GC3 content; it is likely that these are causally related.  相似文献   

5.
Tetraodontiformes includes approximately 350 species assigned to nine families, sharing several reduced morphological features of higher teleosts. The order has been accepted as a monophyletic group by many authors, although several alternative hypotheses exist regarding its phylogenetic position within the higher teleosts. To date, acanthuroids, zeiforms, and lophiiforms have been proposed as sister-groups of the tetraodontiforms. The monophyly and sister-group status was investigated using whole mitochondrial genome (mitogenome) sequences from 44 purposefully-chosen species (26 sequences newly-determined during the study) that fully represent the major tetraodontiform lineages plus all the groups that have been hypothesized as being close relatives. Partitioned Bayesian analyses were conducted with the three datasets that comprised concatenated nucleotide sequences from 13 protein-coding genes (with and without, or with RY-coding, 3rd codon positions), plus 22 transfer RNA and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high posterior probabilities. Mitogenomic data strongly supported the monophyly of tetraodontiform fishes, placing them as a sister-group of either Lophiiformes plus Caproidei or Caproidei only. The sister-group relationship between Acanthuroidei and Tetraodontiformes was statistically rejected using Bayes factors. These results were confirmed by a reanalysis of the previously published nuclear RAG1 gene sequences using the Bayesian method. Within the Tetraodontiformes, however, monophylies of the three superfamilies were not recovered and further taxonomic sampling and subsequent efforts should clarify these relationships.  相似文献   

6.
Studies of the role of flight in vertebrate evolution often have focused on the propatagial muscle complex because this structure forms the wing's leading edge. However, historical narratives about the evolution of flight anatomy are compromised because traditional higher-level taxonomies typically are based in part on the propatagium itself. To avoid this circularity, I used a consensus molecular phylogeny to examine propatagial evolution in the highly aerial sister groups, hummingbirds and swifts (Apodiformes). Mapping of anatomy on molecular-based phylogeny indicates that structural variation in M .  tensor propatagialis pars brevis (TPB) is congruent with the major subclades of both hummingbirds and swifts. However, the humeral tendon and broad attachment of the fleshy belly of TPB with M .  extensor metacarpi radialis (EMR) most likely underwent parallel change in hummingbirds and swifts, while the distal tendon present only in hummingbirds changed from a thin sheet to a strong tendon. The combination of divergent (within hummingbirds or swifts) and parallel (between hummingbirds and swifts) evolutionary patterns implies that the taxonomic value of the propatagial complex in apodiformes depends on anatomical component and level of divergence. The congruence of anatomy with molecular phylogeny provides independent criteria for designating relatively ancestral versus derived clades of apodiformes. Based on these polarities, living hummingbirds and swifts express additional parallel trends from arboreal to more aerial foraging styles, and from depauperate to species-rich clades. Within apodiformes, the link of flight anatomy with taxonomic and ecologic diversity suggests that elaboration of locomotor modes was important for apodiform diversification, echoing a similar pattern for birds relative to their reptilian ancestors.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 211–219.  相似文献   

7.
We analyzed 2995 base pairs of nucleotide sequence data (nuclear beta-fibrinogen intron 7 and mitochondrial cytochrome b and ND2 genes), using parsimony and model-based approaches to infer phylogenetic relationships of the woodpeckers and allies, yielding novel hypotheses for several critical gaps in the knowledge of picid phylogeny. We tested the monophyly of sub-families within the Picidae, and sampled from widely distributed and diverse genera (Celeus, Colaptes, Dryocopus, Melanerpes, Picoides, Picumnus, Sasia, Piculus, and Picus). Relationships of three poorly known Southeast Asian genera (Dinopium, Reinwardtipicus, and Blythipicus) were also examined, revealing unexpected sister relationships. All phylogenetic approaches recovered largely congruent topologies, supporting a monophyletic Picinae and paraphyletic Picumninae, with the monotypic piculet, Nesoctites micromegas, as sister to the Picinae. We report paraphyly for Celeus and Piculus, whereas the broadly distributed genera Picumnus and Dryocopus were supported as monophyletic. Our phylogenetic results indicate a complex geographic history for the Picidae, with multiple disjunct sister lineages distributed between the New World and Asia. The relationships and geographic distribution of basal picid lineages indicates an Old World origin of the Picidae; however, the geographic origin of the Picinae remains equivocal, as the sister relationship between the Caribbean N. micromegas and the true woodpeckers presents the possibility of a New World origin for the Picinae.  相似文献   

8.
Evolutionary relationships of the scrub-birds Atrichornis were investigated using complete sequences of the recombination-activating gene RAG-1 and the proto-oncogene c-mos for two individuals of the noisy scrub-bird Atrichornis clamosus. Phylogenetic analysis revealed that Atrichornis was sister to the genus Menura (the lyrebirds) and that these two genera (the Menurae) were sister to the rest of the oscine passerines. A sister relationship between Atrichornis and Menura supports the traditional view, based on morphology and DNA hybridization, that these taxa are closely related. Similarly, a sister relationship with the remaining oscine passerines agrees with the morphological distinctiveness of Atrichornis and Menura, although this result contradicts conclusions based on DNA hybridization studies. Although Atrichornis is very well known morphologically, previous conclusions regarding its relationships were hampered by a lack of comparative knowledge of other passerines, making concurrence of the sequence data of particular significance.  相似文献   

9.
Nucleotide sequences from the c-mos proto-oncogene have previously been used to reconstruct the phylogenetic relationships between distantly related vertebrate taxa. To explore c-mos variation at shallower levels of avian divergence, we compared c-mos sequences from representative passerine taxa that span a range of evolutionary differentiation, from basal passerine lineages to closely allied genera. Phylogenetic reconstructions based on these c-mos sequences recovered topologies congruent with previous DNA-DNA hybridization-based reconstructions, with many nodes receiving high support, as indicated by bootstrap and reliability values. One exception was the relationship of Acanthisitta to the remaining passerines, where the c-mos-based searches indicated a three-way polytomy involving the Acanthisitta lineage and the suboscine and oscine passerine clades. We also compared levels of c-mos and mitochondrial differentiation across eight oscine passerine taxa and found that c-mos nucleotide substitutions accumulate at a rate similar to that of transversion substitutions in mitochondrial protein-coding genes. These comparisons suggest that nuclear-encoded loci such as c-mos provide a temporal window of phylogenetic resolution that overlaps the temporal range where mitochondrial protein-coding sequences have their greatest utility and that c-mos substitutions and mtDNA transversions can serve as complementary, informative, and independent phylogenetic markers for the study of avian relationships.  相似文献   

10.
The wrens (Aves: Troglodytidae) are a group of primarily New World insectivorous birds, the monophyly of which has long been recognized, but whose intergeneric relationships are essentially unknown. In order to test the monophyly of the group, and to attempt to resolve relationships among genera within it, sequences from the mitochondrial cytochrome b gene and the fourth intron of the nuclear beta-fibrinogen gene were obtained from nearly all genera of wrens, from their relatives as suggested by traditional taxonomy and DNA-DNA hybridization analyses, and from additional passerines. Maximum likelihood analysis of the two data sets yielded maximal congruence between independently derived estimates of relationship, outperforming a variety of weighted parsimony methods. Hierarchical likelihood ratio tests indicated that the two gene regions differed significantly in every estimated parameter of sequence evolution, and combined analysis of the two data sets was accomplished using a heterogeneous-model Bayesian approach. Independent and simultaneous analyses of both data sets supported monophyly of the wrens (excluding one recently added member, the monotypic genus Donacobius) and a sister-group relationship between wrens and the gnatcatchers (Polioptila). Additionally, strong support was found for paraphyly of the genus Thryothorus, and for a sister-group relationship between the genera Cistothorus and Troglodytes. Analyses of these data failed to resolve basal relationships within wrens, possibly due to ambiguity in rooting with a distant, species-poor outgroup. Analysis of the combined data for wrens alone yielded results which were largely congruent with relationships inferred using the complete data set, with the benefit of stronger support for relationships within the group. However, alternative rootings of this ingroup tree were weakly supported by nucleotide substitution data. Insertion-deletion events suggest that the genus Salpinctes may be sister to all other wrens.  相似文献   

11.
Passerine birds comprise over half of avian diversity, but have proved difficult to classify. Despite a long history of work on this group, no comprehensive hypothesis of passerine family-level relationships was available until recent analyses of DNA-DNA hybridization data. Unfortunately, given the value of such a hypothesis in comparative studies of passerine ecology and behaviour, the DNA-hybridization results have not been well tested using independent data and analytical approaches. Therefore, we analysed nucleotide sequence variation at the nuclear RAG-1 and c-mos genes from 69 passerine taxa, including representatives of most currently recognized families. In contradiction to previous DNA-hybridization studies, our analyses suggest paraphyly of suboscine passerines because the suboscine New Zealand wren Acanthisitta was found to be sister to all other passerines. Additionally, we reconstructed the parvorder Corvida as a basal paraphyletic grade within the oscine passerines. Finally, we found strong evidence that several family-level taxa are misplaced in the hybridization results, including the Alaudidae, Irenidae, and Melanocharitidae. The hypothesis of relationships we present here suggests that the oscine passerines arose on the Australian continental plate while it was isolated by oceanic barriers and that a major northern radiation of oscines (i.e. the parvorder Passerida) originated subsequent to dispersal from the south.  相似文献   

12.
Mitochondrial DNA Evidence and Evolution in Varanoidea (Squamata)   总被引:2,自引:0,他引:2  
Varanoidea is a monophyletic group of anguimorph lizards, comprising the New World helodermatids, the Bornean earless monitor Lanthanotus borneensis , and the Old World monitors ( Varanus ). I use mitochondrial DNA sequences and extensive taxonomic sampling to test alternative hypotheses of varanoid relationships. The most parsimonious hypothesis confirms the monophyly of Varanoidea ( Heloderma, Lanthanotus , and Varanus ) and Varanus , as well as the sister-taxon relationship of Varanus and Lanthanotus . The relationships among Varanus species differ in several respects from previous hypotheses. Three major lineages are recognized within Varanus : an African clade basal to the rest of the group, an Indo-Asian clade, and an Indo-Australian clade. Within the last lineage, the endemic Australian dwarf monitors ( Odatria ) form a clade sister to the large Australian monitors (the gouldii group). Tests of the effects of rate heterogeneity and homoplasy demonstrate that putative process partitions of data are largely congruent with one another and contribute positive support to the overall hypothesis.  相似文献   

13.
Evolution, biogeography, and patterns of diversification in passerine birds   总被引:6,自引:0,他引:6  
This paper summarizes and discusses the many new insights into passerine evolution gained from an increased general interest in avian evolution among biologists, and particularly from the extensive use of DNA sequence data in phylogenetic reconstruction. The sister group relationship between the New Zealand rifleman and all other passerines, indicates the importance of the former southern supercontinent Gondwana in the earliest evolution of this group. Following the break-up of Gondwana, the ancestors of other major passerine groups became isolated in Australia (oscines), South America (New World suboscines), and possibly, the then connected Kerguelen Plateau/India/Madagascar tectonic plates (Old World suboscines). The oscines underwent a significant radiation in the Australo-Papuan region and only a few oscine lineages have spread further than to the nearby Southeast Asia. A remarkable exception is the ancestor to the vast Passerida radiation, which now comprises 35% of all bird species. This group obviously benefitted greatly from the increased diversity in plant seed size and morphology during the Tertiary. The lyrebirds (and possibly scrub-birds) constitute the sister group to all other oscines, which renders "Corvida" ( sensu Sibley and Ahlquist 1990) paraphyletic. Sequence data suggests that Passerida, the other clade of oscines postulated based on the results of DNA–DNA hybridizations, is monophyletic, and that the rockfowl and rock-jumpers are the most basal members of this clade. The suboscines in the Old World (Eurylamides) and the New World (Tyrannides), respectively, are sister groups. A provisional, working classification of the passerines is presented based on the increased understanding of the major patterns of passerine evolution.  相似文献   

14.
The gecko genus Phyllopezus occurs across South America's open biomes: Cerrado, Seasonally Dry Tropical Forests (SDTF, including Caatinga), and Chaco. We generated a multi-gene dataset and estimated phylogenetic relationships among described Phyllopezus taxa and related species. We included exemplars from both described Phyllopezus pollicaris subspecies, P. p. pollicaris and P. p.przewalskii. Phylogenies from the concatenated data as well as species trees constructed from individual gene trees were largely congruent. All phylogeny reconstruction methods showed Bogertia lutzae as the sister species of Phyllopezus maranjonensis, rendering Phyllopezus paraphyletic. We synonymized the monotypic genus Bogertia with Phyllopezus to maintain a taxonomy that is isomorphic with phylogenetic history. We recovered multiple, deeply divergent, cryptic lineages within P. pollicaris. These cryptic lineages possessed mtDNA distances equivalent to distances among other gekkotan sister taxa. Described P. pollicaris subspecies are not reciprocally monophyletic and current subspecific taxonomy does not accurately reflect evolutionary relationships among cryptic lineages. We highlight the conservation significance of these results in light of the ongoing habitat loss in South America's open biomes.  相似文献   

15.
Phylogenetic relationships of mangabeys within the Old World monkey tribe Papionini are inferred from analyses of nuclear DNA sequences from five unlinked loci. The following conclusions are strongly supported, based on congruence among trees derived for the five separate gene regions: (1) mangabeys are polyphyletic within the Papionini; (2) Cercocebus is the sister taxon to the genus Mandrillus; and (3) Lophocebus belongs to a clade with Papio and Theropithecus, with Papio as its most likely sister taxon. Morphologically based phylogenies positing mangabey monophyly were evaluated by mapping the sequences for each locus on these trees. The data seem to fit these trees poorly in both maximum-parsimony and likelihood analyses. Incongruence among nuclear gene trees occurred in the interrelationships among Lophocebus, Papio, and Theropithecus. Several factors that may account for this incongruence are discussed, including sampling error, random lineage sorting, and introgression.   相似文献   

16.
The deep divergence between the African endemic passerines Picathartidae (rockfowl Picathartes and rockjumpers Chaetops, four species) and the Passerida (ca. 3500 species) suggests an older history of oscines on the African continent than has previously been assumed. In order to determine whether any additional, unexpectedly deep lineages occur in African endemic songbirds, 29 species--including 10 enigmatic focal taxa endemic to southern Africa--were added to a large nuclear sequence dataset gathered from oscine songbirds (Passeri). Phylogenetic analyses of these data resolve many long-standing questions about the affinities of these birds, not all of which were predicted by traditional approaches. The application of a molecular clock indicates that most basal divergences in Passerida occurred in the middle to late Eocene, with divergences between African and Australasian core corvoids occurring somewhat later in the early Miocene. Consistent with inferences for mammals, divergences between Malagasy endemic passerines and their mainland relatives suggests an asynchronous colonization history. This emerging phylogenetic picture reveals that relationships within Old World families are highly informative regarding the early dispersal and radiation of songbirds out of Gondwana. Future analyses will depend on improving resolution of higher-level phylogenetic relationships among these groups, and increasing the density of taxon sampling within them.  相似文献   

17.

Background  

The Neogastropoda is a highly diversified group of predatory marine snails (Gastropoda: Caenogastropoda). Traditionally, its monophyly has been widely accepted based on several morphological synapomorphies mostly related with the digestive system. However, recent molecular phylogenetic studies challenged the monophyly of Neogastropoda due to the inclusion of representatives of other caenogastropod lineages (e.g. Littorinimorpha) within the group. Neogastropoda has been classified into up to six superfamilies including Buccinoidea, Muricoidea, Olivoidea, Pseudolivoidea, Conoidea, and Cancellarioidea. Phylogenetic relationships among neogastropod superfamilies remain unresolved.  相似文献   

18.
The parrotbills (Paradoxornithidae, meaning "birds of paradox," Aves) are a group of Old World passerines with perplexing taxonomic histories due to substantial morphological and ecological variation at various levels. In this study, phylogenetic relationships of the parrotbills were reconstructed based on sequences of two mitochondrial segments and three nuclear coding regions. Three major clades with characteristic body size and plumage coloration were found in both mtDNA and nuclear gene trees. However, mtDNA phylogeny suggested that the Paradoxornithidae is paraphyletic and relationships among three major parrotbill clades were poorly resolved. On the contrary, apparent and well-supported monophyletic relationships among the three major clades of Paradoxornithidae were revealed by concatenated nuclear dataset. Since paraphyly based on mtDNA data has commonly been found within avian taxa, the conflicting phylogenetic signal between mtDNA and nuclear loci revealed in this study indicates that results obtained from mtDNA dataset alone need to be evaluated with caution. Taxonomic implications of our phylogenetic findings are discussed. These phylogenies also point out areas for future investigation regarding the rapid diversification, morphological evolution and environmental adaptation of various parrotbill species or species complexes.  相似文献   

19.
基于78种直翅目昆虫的18S rRNA基因全序列构建了直翅目各主要类群间的系统发育关系。本研究的结果支持直翅目的单系性,但不支持蝗亚目和螽亚目各自的单系性;直翅目下除蜢总科和蝗总科外各总科的划分多数与Otte系统相一致;蜢总科的单系性得不到支持;蝗总科的剑角蝗科、斑腿蝗科、斑翅蝗科、网翅蝗科和槌角蝗科5科均不是单系群,各物种间的遗传距离差异不大,应合并为一科,即蝗科;本研究支持将Otte系统中蚱总科和螽蟖总科下各亚科级阶元提升为科级阶元;18S rRNA基因全序列可以作为划分科级阶元的工具,当位于同一分支上互成姐妹群的类群间的遗传距离超过1%时,这几个类群属于不同的科;但由于其在进化上的保守性,18S rRNA基因只能用于纲目等高级阶元间关系的研究,而由其获得的总科以下阶元间的关系并不可靠。  相似文献   

20.
We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed "WoodKing" (woodpeckers/rollers/kingfishers), "SCA" (owls/potoos/owlet-nightjars/hummingbirds/swifts), and "Conglomerati." In general, the support is highly significant with just two exceptions, the owls move from the "SCA" group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the "Conglomerati". Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号