首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required.  相似文献   

2.
A total of 25 gyrB gene sequences from 20 Legionella pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were obtained and analyzed, and a multiplex PCR for the simultaneous detection of Legionella bozemanae, Legionella longbeachae, Legionella micdadei and Legioenella pneumophila, and two single PCRs for the differentiation of L. pneumophila subsp. pneumophila and L. pneumophila subsp. fraseri were established. The multiplex PCR method was shown to be highly specific and reproducible when tested against 41 target strains and 17 strains of other bacteria species. The sensitivity of the multiplex PCR was also analyzed and was shown to detect levels as low as 1 ng of genomic DNA or 10 colony-forming units (CFUs) per milliliter in mock water samples. Sixty-three air conditioner condensed water samples from Shanghai City were examined, and the result was validated using 16S rRNA sequencing. The data reported here demonstrate that the multiplex PCR method described is efficient and convenient for the detection of Legionella species in water samples. Twenty L. pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were used for the validation of the two L. pneumophila subspecies-specific PCR methods, and the results indicated that the two PCR methods were both highly specific and convenient for the identification of L. pneumophila at the subspecies level.  相似文献   

3.
4.
A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required.  相似文献   

5.
A Brub  M Trudel    P Payment 《Applied microbiology》1989,55(6):1640-1641
Legionella pneumophila was detected and identified by an immunoblot assay using a monoclonal antibody specific to serogroups 1 to 8. Samples containing L. pneumophila were plated on buffered charcoal yeast extract agar supplemented with glycine, vancomycin, and polymyxin B. After incubation at 35 degrees C for 3 days, colonies were transferred to nitrocellulose membranes by blotting. Simultaneous detection and identification of L. pneumophila were done by treating the membrane with the monoclonal antibody and a peroxidase conjugate to mouse immunoglobulins. A diffuse cross-reaction was observed with Pseudomonas fluorescens colonies, but this was a low-level reaction that could easily be differentiated from the strong specific reactions to L. pneumophila.  相似文献   

6.
Legionella pneumophila is the primary cause of the legionellosis diseases (90 %) (Yu et al. in J Infect Dis 186:127–128, 2002; Doleans et al. in J Clin Microbiol 42:458–460, 2004; Den Boer et al. in Clin Microbiol Infect 14:459–466, 2008). In this study, methodologies based on molecular biology were developed in order to provide a quick diagnosis of the bacterial presence in water samples of Spain. Multiplex real-time polymerase chain reaction assays were realized to target the 16S rRNA and macrophage infectivity potentiator (mip) genes of, respectively, Legionella spp. and L. pneumophila including in the design of an internal control. The results obtained by the culture and the gene amplification methods agreed in 94.44 % for the 16S rRNA gene, and a concordance of 66.67 % of the cases was obtained for the mip gene.  相似文献   

7.
Legionella pneumophila was detected and identified by an immunoblot assay using a monoclonal antibody specific to serogroups 1 to 8. Samples containing L. pneumophila were plated on buffered charcoal yeast extract agar supplemented with glycine, vancomycin, and polymyxin B. After incubation at 35 degrees C for 3 days, colonies were transferred to nitrocellulose membranes by blotting. Simultaneous detection and identification of L. pneumophila were done by treating the membrane with the monoclonal antibody and a peroxidase conjugate to mouse immunoglobulins. A diffuse cross-reaction was observed with Pseudomonas fluorescens colonies, but this was a low-level reaction that could easily be differentiated from the strong specific reactions to L. pneumophila.  相似文献   

8.
Fluorescent resonance energy transfer probes targeting the 16S rRNA gene were constructed for a sensitive and specific real-time PCR for identification and differentiation of Legionella pneumophila from other Legionella spp. For identification of non-L. pneumophila spp. by direct amplicon sequencing, two conventional PCR assays targeting the mip gene were established.  相似文献   

9.
Duopath Legionella (Merck KGaA, Darmstadt, Germany) is a new immunochromatographic assay for the simultaneous identification of cultured L. pneumophila and Legionella species other than L. pneumophila. In tests of 89 L. pneumophila strains and 87 Legionella strains other than L. pneumophila representing 41 different species, Duopath and a widely used latex agglutination assay detected L. pneumophila with 100% and 98% accuracy, respectively, whereas the percentages differed significantly for other Legionella spp. (93% versus 37% [P < 0.001]). Since many countries' regulations require the identification of Legionella spp. in water and environmental samples, the use of Duopath Legionella to comply with those regulations could contribute to significantly fewer false-negative results.  相似文献   

10.
A purification method was developed to isolate Legionella pneumophila cytotoxic protease in a form suitable for biological assays. Culture supernatant of a clinical isolate of L. pneumophila, Knoxville 1 strain, was used as the starting material. The protease was purified by FPLC on a Mono Q column followed by ultrafiltration. The isolated proteolytic enzyme has a specific activity of 90 azocasein units/mg protein and is a 42 kDa monomeric protein as determined by SDS-PAGE and gel filtration chromatography. It is heat-labile and toxic to a variety of cells e.g. McCoy, SIRC, HeLa, and rhabdomyosarcoma cells, baby hamster and green monkey kidney cells, and human embryonic lung fibroblasts.  相似文献   

11.
12.
The intracellular bacterial pathogen Legionella pneumophila follows a developmental cycle in which replicative forms (RFs) differentiate into infectious stationary-phase forms (SPFs) in vitro and in vivo into highly infectious mature intracellular forms (MIFs). The potential relationships between SPFs and MIFs remain uncharacterized. Previously we determined that L. pneumophila survives, but does not replicate, while it transiently resides (for 1 to 2 h) in food vacuoles of the freshwater ciliate Tetrahymena tropicalis before being expelled as legionellae-laden pellets. We report here that SPFs have the ability to rapidly (<1 h) and directly (in the absence of bacterial replication) differentiate into MIFs while in transit through T. tropicalis, indicating that SPFs and MIFs constitute a differentiation continuum. Mutant RFs lacking the sigma factor gene rpoS, or the response regulator gene letA, were unable to produce normal SPFs in vitro and did not fully differentiate into MIFs in vivo, further supporting the existence of a common mechanism of differentiation shared by SPFs and MIFs. Mutants with a defective Dot/Icm system morphologically differentiated into MIFs while in transit through T. tropicalis. Therefore, T. tropicalis has allowed us to unequivocally conclude that SPFs can directly differentiate into MIFs and that the Dot/Icm system is not required for differentiation, two events that could not be experimentally addressed before. The Tetrahymena model can now be exploited to study the signals that trigger MIF development in vivo and is the only replication-independent model reported to date that allows the differentiation of Dot/Icm mutants into MIFs.  相似文献   

13.
Shortwave UV light was assessed as a feasible modality for the control of Legionnaires disease bacterium in water. The results of this study show that Legionella pneumophila and six other Legionella species are very sensitive to low doses of UV. However, all Legionella species tested effectively countered the germicidal effect of UV when subsequently exposed to photoreactiving light.  相似文献   

14.
Two Acanthamoeba species, fed at three temperatures, expelled vesicles containing living Legionella pneumophila cells. Vesicles ranged from 2.1 to 6.4 μm in diameter and theoretically could contain several hundred bacteria. Viable L. pneumophila cells were observed within vesicles which had been exposed to two cooling tower biocides for 24 h. Clusters of bacteria in vesicles were not dispersed by freeze-thawing and sonication. Such vesicles may be agents for the transmission of legionellosis associated with cooling towers, and the risk may be underestimated by plate count methods.  相似文献   

15.
Ecological distribution of Legionella pneumophila.   总被引:59,自引:34,他引:25       下载免费PDF全文
Bacteria were concentrated 500-fold from 20-liter water samples collected from 67 different lakes and rivers in the United States. The data suggest that Legionella pneumophila is part of the natural aquatic environment and that the bacterium is capable of surviving extreme ranges of environmental conditions. The data further demonstrate the effectiveness of the direct fluorescent-antibody technique for detecting L. pneumophila in natural aquatic systems. Smears of the concentrated samples were screened microscopically for serogroups of L. pneumophila by the direct fluorescent-antibody technique. Virtually all of the 793 samples were found to be positive by this method. The 318 samples containing the largest numbers of positive bacteria which were morphologically consistent with L. pneumophila were injected into guinea pigs for attempted isolations. Isolates were obtained from habitats with a wide range of physical, chemical, and biological parameters. Samples collected monthly from a thermally altered lake and injected into guinea pigs demonstrated a seasonality of infection, with the highest frequency of infection occurring during the summer months.  相似文献   

16.
Serospecific antigens of Legionella pneumophila.   总被引:13,自引:4,他引:9       下载免费PDF全文
Serospecific antigens isolated by EDTA extraction from four serogroups of Legionella pneumophila were analyzed for their chemical composition, molecular heterogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunological properties. The antigens were shown to be lipopolysaccharides and to differ from the lipopolysaccharides of other gram-negative bacteria. The serospecific antigens contained rhamnose, mannose, glucosamine, and two unidentified sugars together with 2-keto-3-deoxyoctonate, phosphate, and fatty acids. The fatty acid composition was predominantly branched-chain acids with smaller amounts of 3-hydroxymyristic acid. The antigens contain periodate-sensitive groups; mannosyl residues were completely cleaved by periodate oxidation. Hydrolysis of the total lipopolysaccharide by acetic acid resulted in the separation of a lipid A-like material that cross-reacted with the antiserum to lipid A from Salmonella minnesota but did not comigrate with it on sodium dodecyl sulfate gels. None of the four antigens contained heptose. All of the antigen preparations showed endotoxicity when tested by the Limulus amebocyte lysate assay. The results of this study indicate that the serogroup-specific antigens of L. pneumophila are lipopolysaccharides containing an unusual lipid A and core structure and different from those of other gram-negative bacteria.  相似文献   

17.
The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated through a four times repeated blind experiment performed in two different laboratories including 50 Salmonella spp. with representative strains from each of the 5 different Salmonella subgenera and 30 non-Salmonella strains. Both parameters DeltaR(n) (fluorescence intensity of template through a normalized reporter value) and C(T) (cycle at which the fluorescence intensity achieved a pre-established threshold) were analyzed. Overall mean DeltaR(n) and C(T) values for Salmonella strains (2.14+/-0.87 and 15.30+/-0.90, respectively) were statistically different from values for non-Salmonella strains, allowing the establishment of cut-off DeltaR(n) and C(T) values based on 95% confidence intervals that allowed the correct identification of all strains tested in each independent experiment. The accuracy of this assay in terms of inclusivity and exclusivity was 100%. Moreover, the PCR system proved to be especially convenient because the pre-mix containing all PCR reagents except for the bacterial cells could be kept at -20 degrees C for at least 1 month before its use. The optimized TaqMan real-time PCR assay is a useful, simple and rapid method for routine identification of Salmonella spp., irrespective of the particular subgenus.  相似文献   

18.
The dynamics of Legionella spp. and of dominant bacteria were investigated in water from a cooling tower plant over a 9-month period which included several weeks when Legionella pneumophila proliferated. The structural diversity of both the bacteria and the Legionella spp. was monitored by a fingerprint technique, single-strand conformation polymorphism, and Legionella spp. and L. pneumophila were quantified by real-time quantitative PCR. The structure of the bacterial community did not change over time, but it was perturbed periodically by chemical treatment or biofilm detachment. In contrast, the structure of the Legionella sp. population changed in different periods, its dynamics at times showing stability but also a rapid major shift during the proliferation of L. pneumophila in July. The dynamics of the Legionella spp. and of dominant bacteria were not correlated. In particular, no change in the bacterial community structure was observed during the proliferation of L. pneumophila. Legionella spp. present in the cooling tower system were identified by cloning and sequencing of 16S rRNA genes. A high diversity of Legionella spp. was observed before proliferation, including L. lytica, L. fallonii, and other Legionella-like amoebal pathogen types, along with as-yet-undescribed species. During the proliferation of L. pneumophila, Legionella sp. diversity decreased significantly, L. fallonii and L. pneumophila being the main species recovered.  相似文献   

19.
The genus Legionella consists of 51 serogroups comprising 34 species. Biochemical reactions and cell wall fatty acid and quinone analyses may confirm that an isolate is a Legionella sp. and indicate to which species it belongs, but DNA hybridization studies have been necessary for a definitive identification. Recently, the commercially available BIOLOG identification system has offered a standardized, easily reproducible system of substrate metabolism by bacteria resuspended in multiwell plates. A tetrazolium dye acts as an electron acceptor during the oxidation of the wide range of substrates and forms an irreversible, highly colored formazan when reduced. The 95 substrate wells are read rapidly with a conventional plate reader, and the results are downloaded for comparison with a computer data base, allowing quick identification. The BIOLOG system's ability to test more diverse classes of substrates, including amino acids, peptides, carboxylic acids, and carbohydrates, was used in this study to establish a new data base and identify the asaccharolytic Legionella spp. In particular, Legionella pneumophila behaved as a microaerophile, and the fastest, most diverse metabolic activities occurred after the development of a low-oxygen incubation environment. Alternatively, bacteria could be successfully incubated in air when their concentration was double that recommended by the manufacturer. Similar results were obtained by using either Page's amoebal saline or distilled water as the resuspending and incubation medium. Type strains did not cross-identify with any of the strains already in the manufacturer's data base. The results indicate that this modified system has value in being able to identify Legionella isolates to the species level.  相似文献   

20.
Aims: This study was designed to evaluate the usefulness of quantification by real‐time PCR as a management tool to monitor concentrations of Legionella spp. and Legionella pneumophila in industrial cooling systems and its ability to anticipate culture trends by the French standard method (AFNOR T90‐431). Methods and Results: Quantifications of Legionella bacteria were achieved by both methods on samples from nine cooling systems with different water qualities. Proportion of positive samples for L. pneumophila quantified by PCR was clearly lower in deionized or river waters submitted to a biocide treatment than in raw river waters, while positive samples for Legionella spp. were quantified for almost all the samples. For some samples containing PCR inhibitors, high quantification limits (up to 4·80 × 105 GU l?1) did not allow us to quantify L. pneumophila, when they were quantified by culture. Finally, the monitoring of concentrations of L. pneumophila by both methods showed similar trends for 57–100% of the samples. Conclusions: These results suggest that, if some methodological steps designed to reduce inhibitory problems and thus decrease the quantification limits, could be developed to quantify Legionella in complex waters, the real‐time PCR could be a valuable complementary tool to monitor the evolution of L. pneumophila concentrations. Significance and Impact of the Study: This study shows the possibility of using real‐time PCR to monitor L. pneumophila proliferations in cooling systems and the importance to adapt nucleic acid extraction and purification protocols to raw waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号