首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous wild bovids are facing threat of extinction owing to the loss of habitat and various other reasons. Spermatogonial stem cells (SSCs) represent the only germline stem cells in adult body that are capable of self-renewal and that can undergo differentiation to produce haploid germ cells. SSCs can, therefore, serve as a useful resource for preservation of germplasm of threatened and endangered mammals. The Indian black buck (Antilope cervicapra L.) is a small Indian antelope that is listed as endangered by the Indian Wildlife Protection Act, 1972. Immunohistochemical analysis of testes tissues of black buck revealed the presence of spermatogonia that were specifically stained by lectin-Dolichos biflorus agglutinin (DBA). The expression of pluripotent cell-specific markers, NANOG and stage-specific embryonic antigen-1 (SSEA-1), was detected in spermatogonia. Interestingly, the expression of POU5F1 (OCT3/4) was absent from spermatogonia, however, it was detected in differentiating cells such as spermatocytes and round spermatids but not in elongated spermatids. The expression of NANOG protein was also present in spermatocytes but absent in round and elongated spermatids. Using the testis transplantation assay, stem cell potential of black buck spermatogonia was confirmed as indicated by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. The findings from this study suggest the presence of SSCs in the testis of an endangered bovid for the first time and open new possibility to explore the use of SSCs in conservation.  相似文献   

2.
Buffalo is an economically important livestock species in Asia. Little is known about male germ line technology owing to lack of sufficient understanding regarding expression of germ- and somatic-cell specific-proteins in the testis. In this study, we identified UCHL-1 (PGP 9.5) and lectin- Dolichos biflorus agglutinin (DBA) as specific markers for spermatogonia in buffalo testis. Expression of germ-cell and pluripotency-specific proteins such as DDX4 (VASA) and POU5F1 (OCT3/4) were also present in spermatogonia. Interestingly, the expression of somatic cell-specific proteins such as VIMENTIN and GATA4 were also detected in germ cells. Using two-step enzymatic digestion followed by differential plating and Percoll density-gradient centrifugation, an approximately 55% spermatogonia-enriched cell population could be obtained from the prepubertal buffalo testis. Isolated spermatogonia could survive and proliferate in vitro in DMEM/F12 medium containing 10% fetal bovine serum in the absence of any specific growth factors for a week. Cultured spermatogonia showed DBA affinity and expressed DDX4 and POU5F1. These results may help to establish a long-term culture system for buffalo spermatogonia.  相似文献   

3.
大鼠睾丸特异表达基因Ube1的分离鉴定及生物学特征   总被引:2,自引:0,他引:2  
Du Y  Liu ML  Jia MC 《生理学报》2008,60(3):382-390
本研究采用抑制性消减杂交(suppression subtracfive hybridization, SSH)和cDNA快速扩增(rapid amplification of cDNA ends, RACE)技术从大鼠A型精原细胞和粗线期精母细胞中成功克隆出大鼠泛素激活酶(ubiquitin-activating enzyme)基因Ube1 (GenBank登录号EF690356).该基因序列全长3433 bp,其中开放阅读框有3171 bp,编码一个含1057个氨基酸的蛋白质.Blast比对显示,Ube1与小鼠泛素激活酶基因Ubely1的同源性为93%,与人泛素激活酶基因UBE1的同源性为82%.Ube1基因编码的蛋白质含泛素激活酶信号位点和泛素激活酶活化位点,这些位点也存在于人类和小鼠的泛素激活酶1中.RT-PCR分析显示,Ube1在睾丸中大量表达,而在心、肝、脾、肺、肾、肌肉、脑、卵巢中没有表达.荧光定量PCR分析不同生精细胞中Ube1的表达,显示Ube1在A型精原细胞中大量表达,在粗线期精母细胞、圆形精子细胞和支持细胞中微弱表达.以上结果提示,Ube1是大鼠睾丸特异表达基因,可能通过参与泛素/蛋白酶体途径来影响精子发生.  相似文献   

4.
In the mammalian testis, spermatogenesis is initiated from a subset of stem cells belonging to undifferentiated type A spermatogonia. In spite of the biologic significance of undifferentiated type A spermatogonia, little is known about their behavior and properties because of a lack of specific cell surface markers. Here we show that CDH1 (previously known as E-cadherin) is expressed specifically in undifferentiated type A spermatogonia in the mouse testis. Histologic analysis showed that CDH1-positive cells had all the characteristics of undifferentiated type A spermatogonia. Whole-mount immunohistochemistry showed that CDH1-positive cells made clusters mainly comprising one, two, four, or eight cells. They survived after administration of the cytotoxic agent busulfan to mice, and then regenerated seminiferous epithelia. Transplantation experiments showed that only CDH1-positive cells had colonizing activity in the recipient testis. Our data clearly demonstrated that spermatogenic stem cells reside among undifferentiated type A spermatogonia, which express CDH1.  相似文献   

5.
Mutations in the dominant-white spotting (W; c-kit) and stem cell factor (Sl; SCF) genes, which encode the transmembrane tyrosine kinase receptor and its ligand, respectively, affect both the proliferation and differentiation of many types of stem cells. Almost all homozygous W or Sl mutant mice are sterile because of the lack of differentiated germ cells or spermatogonial stem cells. To characterize spermatogenesis in c-kit/SCF mutants and to understand the role of c-kit signal transduction in spermatogonial stem cells, the existence, proliferation, and differentiation of spermatogonia were examined in the W/Wv mutant mouse testis. In the present study, some of the W/Wv mutant testes completely lacked spermatogonia, and many of the remaining testes contained only a few spermatogonia. Examination of the proliferative activity of the W/Wv mutant spermatogonia by transplantation of enhanced green fluorescent protein (eGFP)-labeled W/Wv spermatogonia into the seminiferous tubules of normal SCF (W/Wv) or SCF mutant (Sl/Sld) mice demonstrated that the W/Wv spermatogonia had the ability to settle and proliferate, but not to differentiate, in the recipient seminiferous tubules. Although the germ cells in the adult W/Wv testis were c-kit-receptor protein-negative undifferentiated type A spermatogonia, the juvenile germ cells were able to differentiate into spermatogonia that expressed the c-kit-receptor protein. Furthermore, differentiated germ cells with the c-kit-receptor protein on the cell surface could be induced by GnRH antagonist treatment, even in the adult W/Wv testis. These results indicate that all the spermatogonial stem cell characteristics of settlement, proliferation, and differentiation can be demonstrated without stimulating the c-kit-receptor signal. The c-kit/SCF signal transduction system appears to be necessary for the maintenance and proliferation of differentiated c-kit receptor-positive spermatogonia but not for the initial step of spermatogonial cell differentiation.  相似文献   

6.
In the cultivated male Japanese eel, spermatogonia are the only germ cells present in the testis. Weekly injections of human chorionic gonadotropin (HCG) can induce complete spermatogenesis from proliferation of spermatogonia to spermiogenesis. In some cases, however, HCG injection fails to induce complete spermatogenesis. Testicular morphological observations revealed that HCG-injected eels could be classified into three types based on their testicular conditions. Type 1 eels had a well-developed testis and the milt could be acquired by hand-stripping. In type 2 eels, spermatogenesis was also induced by HCG injection, but testicular size was remarkably smaller than that of type 1 eels, and the milt could not be hand-stripped. At the end of the experiment, type 2 fish had only spermatogonia and a small amount of spermatozoa, but no spermatocytes or spermatids, in their testis. Type 3 eels had thready testis, which did not develop any germ cells during the experimental period. These results suggest that, despite elevations of plasma 11–ketotestosterone levels, HCG injections were not successful in inducing the completion of spermatogenesis in type 2 and type 3 eels. In most spermatogonia of type 2 eels, meiosis was not induced by HCG injections. Furthermore, only few mitotic divisions had occurred as evidenced by the presence of 23 to 26 late type B spermatogonia in most cysts. This suggests that spermatogonial stem cells undergo four or five, and occasionally six, mitotic divisions before the interruption of spermatogenesis in type 2 eels. It is proposed that those numbers of mitotic divisions are related to a mediator that regulates entry of spermatogonia of the Japanese eel into meiosis.  相似文献   

7.
8.
To study the complex molecular mechanisms of mammalian spermatogenesis, it would be useful to be able to isolate cells at each stage of differentiation, especially at the stage in which the cells switch from mitosis to meiosis. Currently, no useful marker proteins or gene promoters specific to this important stage are known. We report here a transgenic mouse line that under the control of the promoter for a histone variant, H2A.X, expressed an enhanced green fluorescent protein (EGFP) in cells at the stage of the mitosis-meiosis switch. Endogenous H2A.X is expressed in type A spermatogonia through meiotic prophase spermatocytes in testis and in some somatic cells. However, despite the fact that its expression was driven by the H2A.X promoter, the EGFP expressed in the transgenic mice specifically labeled only the intermediate spermatogonia stage through the meiotic prophase spermatocyte stage in transgenic mice containing the -600-base pair H2A.X promoter/EGFP construct. Type A spermatogonia and somatic cells of other organs were not labeled. This expression pattern made it possible to isolate living cells from the testis of the transgenic mice at the stage of the mitosis-meiosis switch in spermatogenesis using EGFP fluorescence.  相似文献   

9.
10.
Peroxisomes are organelles that are almost ubiquitous in eukaryotic cells. They have, however, never been described in germ cells within the testis. Since some peroxisomal diseases like Adrenoleukodystrophy are associated with reduced fertility, we have re-investigated the peroxisomal compartment of the germinal epithelium of mice using in situ hybridization, immunohistochemistry, Western blotting and immunoelectron microscopy. Within the seminiferous tubules, peroxisomes are present in Sertoli cells and in germ cells. We could show that small-sized peroxisomes of typical ultrastructure are concentrated in spermatogonia and disappear during the course of spermatogenesis. Peroxisomes of spermatogonia differ in their relative protein composition from previously described peroxisomes of interstitial cells of Leydig. Since germ cells differentiate in mouse testis in a synchronized fashion, the disappearence of peroxisomes could be a suitable model system to investigate the degradation of an organelle as part of a physiological differentiation process in higher eukaryotes.  相似文献   

11.
12.
Identification, isolation, and in vitro culture of porcine gonocytes   总被引:3,自引:0,他引:3  
Gonocytes are primitive germ cells that reside in the seminiferous tubules of neonatal testes and give rise to spermatogonia, thereby initiating spermatogenesis. Due to a lack of specific markers, the isolation and culture of these cells has proven to be difficult in the pig. In the present study, we show that a lectin, Dolichos biflorus agglutinin (DBA), which has specific affinity for primordial germ cells (PCGs) in the genital ridge, binds specifically to gonocytes in neonatal pig testes. The specific affinity of DBA for germ cells was progressively lost with age. This suggests that DBA binds strongly to primitive germ cells, such as gonocytes, weakly to primitive spermatogonia, and not at all to spermatogonia. The presence of alkaline phosphatase (AP) activity in the germ cells of neonatal pig testis confirmed the existence of primitive germ cells. Gonocytes from neonatal pig testis were purified, and a cell population that consisted of approximately 70% gonocytes was obtained, as indicated by the DBA binding assay. Purified gonocytes were cultured in DMEM/F12 supplemented with 10% FBS in the absence of any specific growth factors for 7 days. The cells remained viable and proliferated actively in culture. Initially, the gonocytes grew as focal colonies that transformed to three-dimensional colonies by 7 days of culture. Cultured germ cells expressed SSEA-1, a marker for embryonic stem (ES) cells, and were negative for the expression of somatic cell markers. These results should help to establish a male germ cell line that could be used for studying spermatogenesis in vitro and for genetic modification of pigs.  相似文献   

13.
In whole mounts of seminiferous tubules of C3H/101 F1 hybrid mice, spermatogonia were counted in various stages of the epithelial cycle. Furthermore, the total number of Sertoli cells per testis was estimated using the disector method. Subsequently, estimates were made of the total numbers of the different spermatogonial cell populations per testis.

The results of the cell counts indicate that the undifferentiated spermatogonia are actively proliferating from stage XI until stage IV. Three divisions of the undifferentiated spermatogonia are needed to obtain the number of A1 plus undifferentiated spermatogonia produced each epithelial cycle. Around stage VIII almost two-thirds of the Apr and all of the Aal spermatogonia differentiate into A1 spermatogonia. It was estimated that there are 2.5 × 106 differentiating spermatogonia and 3.3 × 105 undifferentiated spermatogonia per testis. There are about 35,000 stem cells per testis, constituting about 0.03% of all germ cells in the testis. It is concluded that the undifferentiated spermatogonia, including the stem cells, actively proliferate during about 50% of the epithelial cycle.  相似文献   


14.
15.
在哺乳动物成体睾丸中,精子发生的过程开始于未分化的A型精原细胞的干细胞群.目前已有报道在小鼠未分化的A型精原细胞中特异性表达钙依赖性跨膜黏着蛋白基因(cdh1),但绵羊的cdh1基因全序列未见报道.为了更好地研究绵羊精原干细胞的特性,根据已报道的其他物种的cdh1基因的cDNA保守区设计引物,从成年蒙古绵羊睾丸中提取总RNA,采用RT-PCR和分子克隆方法克隆了蒙古绵羊cdh1基因cDNA全编码区.DNA序列测定结果与牛的核苷酸序列比对,同源性为96.5%,说明该基因在进化上是高度保守的.这为制备绵羊CDHI的抗体奠定了基础,并且为绵羊精原干细胞的分子水平鉴定提供了研究备件.  相似文献   

16.
Bcl-w, a prosurvival member of the Bcl-2 family, is essential for spermatogenesis. However, the mechanisms by which Bcl-w participates in the regulation of apoptosis in the testis are largely unknown. To explore the potential role of Bcl-w in the regulation of apoptosis in the testis, the expression of Bcl-w mRNA and protein during testicular development and spermatogenesis, the dimerization with the proapoptosis members of the Bcl-2 family, and the responses to hormonal stimulation in vitro and apoptosis-inducing signals in vivo were investigated. Both Bcl-w mRNA and protein were detected in Sertoli cells, spermatogonia, and spermatocytes, as well as in Leydig cells. The steady-state levels of Bcl-w mRNA and protein were much higher in Sertoli cells than in spermatogonia and spermatocytes. In the adult rat testis, both Bcl-w mRNA and protein in Sertoli cells displayed a stage-specific expression pattern. Bcl-w could form complexes with Bax and Bak but not with Bad. Bax and Bak were immunohistochemically localized to the same cell types as Bcl-w, but with higher expression levels in spermatocytes and spermatogonia than in Sertoli cells. FSH could up-regulate Bcl-w mRNA levels in the seminiferous tubules cultured in vitro, whereas no effect was observed when testosterone was applied. Three animal models that display spermatogonial apoptosis induced by blockade of stem cell factor/c-kit interaction by a function-blocking anti-c-kit antibody, spermatocyte apoptosis induced by methoxyacetic acid, and apoptosis of spermatogonia, spermatocytes, and spermatids induced by testosterone withdrawal after ethylene dimethane sulfonate treatment were employed to check the changes of Bcl-w, Bax, and Bak protein levels during apoptosis of specific germ cells. In all three models, the ratios of Bax/Bcl-w and Bak/Bcl-w were significantly elevated. The present study suggests that Bcl-w is an important prosurvival factor of Sertoli cells, spermatogonia, and spermatocytes and participates in the regulation of apoptosis by binding proapoptotic factors Bax and Bak. The ratios of Bax/Bcl-w and Bak/Bcl-w may be decisive for the survival of Sertoli cells, spermatogonia, and spermatocytes.  相似文献   

17.
18.
The Drosophila testis has proven to be a valuable model organ for investigation of germline stem cell (GSC) maintenance and differentiation as well as elucidation of the genetic programs that regulate differentiation of daughter spermatogonia. Development of germ cell specific GAL4 driver transgenes has facilitated investigation of gene function in GSCs and spermatogonia but specific GAL4 tools are not available for analysis of postmitotic spermatogonial differentiation into spermatocytes. We have screened publically available pGT1 strains, a GAL4‐encoding gene trap collection, to identify lines that can drive gene expression in late spermatogonia and early spermatocytes. While we were unable to identify any germline‐specific drivers, we did identify an insertion in the chiffon locus, which drove expression specifically in early spermatocytes within the germline along with the somatic cyst cells of the testis. genesis 50:914–920, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Spermatogonia in the mouse testis arise from early postnatal gonocytes that are derived from primordial germ cells (PGCs) during embryonic development. The proliferation, self-renewal, and differentiation of spermatogonial stem cells provide the basis for the continuing integrity of spermatogenesis. We previously reported that Pin1-deficient embryos had a profoundly reduced number of PGCs and that Pin1 was critical to ensure appropriate proliferation of PGCs. The current investigation aimed to elucidate the function of Pin1 in postnatal germ cell development by analyzing spermatogenesis in adult Pin1-/- mice. Although Pin1 was ubiquitously expressed in the adult testis, we found it to be most highly expressed in spermatogonia and Sertoli cells. Correspondingly, we show here that Pin1 plays an essential role in maintaining spermatogonia in the adult testis. Germ cells in postnatal Pin1-/- testis were able to initiate and complete spermatogenesis, culminated by production of mature spermatozoa. However, there was a progressive and age-dependent degeneration of the spermatogenic cells in Pin1-/- testis that led to complete germ cell loss by 14 mo of age. This depletion of germ cells was not due to increased cell apoptosis. Rather, detailed analysis of the seminiferous tubules using a germ cell-specific marker revealed that depletion of spermatogonia was the first step in the degenerative process and led to disruption of spermatogenesis, which resulted in eventual tubule degeneration. These results reveal that the presence of Pin1 is required to regulate proliferation and/or cell fate of undifferentiated spermatogonia in the adult mouse testis.  相似文献   

20.
Ca(2+)/calmodulin-dependent protein kinase IV and calspermin are two proteins encoded by the Camk4 gene. Both are highly expressed in the testis, where in situ hybridization studies in rat testes have demonstrated that CaMKIV mRNA is localized to pachytene spermatocytes, while calspermin mRNA is restricted to spermatids. We have examined the expression patterns of both CaMKIV and calspermin in mouse testis and unexpectedly find that CaMKIV is expressed in spermatogonia and spermatids but excluded from spermatocytes, while calspermin is found only in spermatids. CaMKIV and calspermin expression in the testis are stage-dependent and appear to be coordinately regulated. In germ cells, we find that CaMKIV is associated with the chromatin. We further demonstrate that a fraction of CaMKIV in spermatids is hyperphosphorylated and specifically localized to the nuclear matrix. These novel findings may implicate CaMKIV in chromatin remodeling during nuclear condensation of spermatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号