首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The death domain-associated protein (Daxx) was originally cloned as a CD95 (FAS)-interacting protein and modulator of FAS-induced cell death. Daxx accumulates in both the nucleus and the cytoplasm; in the nucleus, Daxx is found associated with the promyelocytic leukaemia (PML) nuclear body and with alpha-thalassemia/mental retardation syndrome protein (ATRX)-positive heterochromatic regions. In the cytoplasm, Daxx has been reported to interact with various proteins involved in cell death regulation. Despite a significant number of studies attempting to determine Daxx function in apoptotic and non-apoptotic cell death, its precise role in this process is only partially understood. Here, we critically review the current understanding of Daxx function and shed new light on this interesting field.  相似文献   

2.
3.
4.
The study of giant cells in populations of different tumor cells and evaluation of their role in cancer development is an expanding field. The formation of giant cells has been shown to be followed by mitotic catastrophe, apoptosis, necrosis, and other types of cell elimination. Reports also demonstrate that giant cells can escape cell death and give rise to new cancer cells. However, it is not known if the programmed cell death is involved in this type of cell cycle disorders. Here we describe principal events that are observed during giant cell formation. We also consider the role of giant cells in cancer development, taking into account both published work and our own recent data in this field.  相似文献   

5.
Plasma membrane organization and the potential role, or not, of lipid raft microdomains in signal transduction is a controversial topic. Cross-correlation fluorescent correlation spectroscopy (CC-FCS) shows promise as a new approach to rapidly probe protein-protein interactions in living cells during signal transduction. CC-FCS data from studies of IgE receptor signaling challenge models of large stable lipid raft signaling domains and reveal a new complexity in the dynamic (re)organization of signaling complexes.  相似文献   

6.
Recent data suggest that the lipopolysaccharide receptor Toll-like receptor (TLR) 4 is expressed by epithelial cells and might play a role in the mucosal host defense against Gram-negative bacteria. However, since many body surfaces are colonized by the physiological microflora, activation of epithelial TLRs must be tightly controlled to avoid unintended stimulation and mucosal inflammation. The present review summarizes the current understanding of TLR4-mediated recognition and addresses specific questions on microbial recognition on mucosal surfaces, with particular emphasis on the gastrointestinal and urinary tract.  相似文献   

7.
Mitotic death is a delayed response of p53 mutant tumours that are resistant to genotoxic damage. Questions surround why this response is so delayed and how its mechanisms serve a survival function. After uncoupling apoptosis from G1 and S phase arrests and adapting these checkpoints, p53 mutated tumour cells arrive at the G2 compartment where decisions regarding survival and death are made. Missed or insufficient DNA repair in G1 and S phases after severe genotoxic damage results in cells arriving in G2 with an accumulation of point mutations and chromosome breaks. Double strand breaks can be repaired by homologous recombination during G2 arrest. However, cells with excessive chromosome lesions either directly bypass the G2/M checkpoint, starting endocycles from G2 arrest, or are subsequently detected by the spindle checkpoint and present with the features of mitotic death. These complex features include apoptosis from metaphase and mitosis restitution, the latter of which can also facilitate transient endocycles, producing endopolyploid cells. The ability of cells to initiate endocycles during G2 arrest and mitosis restitution most likely reflects their similar molecular environments, with down-regulated mitosis promoting factor activity. Resulting endocycling cells have the ability to repair damaged DNA, and although mostly reproductively dead, in some cases give rise to mitotic progeny. We conclude that the features of mitotic death do not simply represent aberrations of dying cells but are indicative of a switch to amitotic modes of cell survival that may provide additional mechanisms of genotoxic resistance.  相似文献   

8.
9.
10.
11.
Over the past several years, it has become apparent that enteropathogens activate cell death programs. For Salmonella and Shigella species, the induction of cell death is required for pathogenesis, and the mechanisms by which these bacteria induce cell death is an area of intense investigation. Although initial studies suggested that Salmonella induce cell death through an apoptotic pathway, recent studies demonstrate that cell death occurs through a unique caspase 1-dependent mechanism.  相似文献   

12.
13.
14.
Abnormalities of α-synuclein (α-syn) and NMDA receptors (NMDARs) are implicated in the pathogenesis of Parkinson's disease. However, how these proteins interact with each other has not been elucidated. Here, the effect of α-syn on NMDARs was investigated by examining the alterations of surface NMDAR NR1 subunits in MES23.5 dopaminergic cells transfected with the human α-syn gene as well as in cells treated with extracellularly added human α-syn. As demonstrated previously that α-syn can enter cells in a non-endocytic manner without being degraded by the cellular proteolytic systems, the extracellularly added α-syn entered the cytoplasm of MES23.5 cells in a concentration-dependent manner. Both the α-syn-transfected cells and α-syn-treated cells exhibited increased intracellular α-syn levels and reduced surface NR1 without altering the total NR1. The α-syn-induced surface NR1 reduction was accompanied by suppression of NMDA-elicited intracellular Ca(2+) elevation and reductions of NMDA-induced caspase 3 activation and cell death, which was abolished by hypotonic shock and K(+) depletion, a procedure that blocks clathrin-mediated endocytosis, and by suppression of RAB5B expression with anti-RAB5B oligonucleotides. The data obtained provide evidence for the first time that α-syn may promote clathrin-mediated NMDAR endocytosis.  相似文献   

15.
Methylglyoxal is a toxic electrophile. In Escherichia coli cells, the principal route of methylglyoxal production is from dihydroxyacetone phosphate by the action of methylglyoxal synthase. The toxicity of methylglyoxal is believed to be due to its ability to interact with the nucleophilic centres of macromolecules such as DNA. Bacteria possess an array of detoxification pathways for methylglyoxal. In E. coli, glutathione-based detoxification is central to survival of exposure to methylglyoxal. The glutathione-dependent glyoxalase I-II pathway is the primary route of methylglyoxal detoxification, and the glutathione conjugates formed can activate the KefB and KefC potassium channels. The activation of these channels leads to a lowering of the intracellular pH of the bacterial cell, which protects against the toxic effects of electrophiles. In addition to the KefB and KefC systems, E. coli cells are equipped with a number of independent protective mechanisms whose purpose appears to be directed at ensuring the integrity of the DNA. A model of how these protective mechanisms function will be presented. The production of methylglyoxal by cells is a paradox that can be resolved by assigning an important role in adaptation to conditions of nutrient imbalance. Analysis of a methylglyoxal synthase-deficient mutant provides evidence that methylglyoxal production is required to allow growth under certain environmental conditions. The production of methylglyoxal may represent a high-risk strategy that facilitates adaptation, but which on failure leads to cell death. New strategies for antibacterial therapy may be based on undermining the detoxification and defence mechanisms coupled with deregulation of methylglyoxal synthesis. Received: 30 March 1998 / Accepted: 22 June 1998  相似文献   

16.
Although there are different ways in which cells may die, it is now thought that in a developmental context cells are induced to positively commit suicide whilst in a homeostatic context the absence of certain survival factors may provide the impetus for suicide. There appears to be some variation in the morphology and indeed the biochemistry of these suicide pathways; some treading the path of "apoptosis", others following a more generalized pathway to deletion, but both usually being genetically and synthetically motivated. There is some evidence that certain symptoms of "apoptosis" such as endonuclease activation can be spuriously induced without engaging a genetic cascade, however, presumably true apoptosis and programmed cell death must be genetically mediated. It is also becoming clear that mitosis and apoptosis are toggled or linked in some way and that the balance achieved depends on signals received from appropriate growth or survival factors.  相似文献   

17.
The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show a programme leading to their death. Some scientists noted that leaf yellowing, if it has not gone too far, can be reversed. They suggested calling leaf yellowing, before the point of no return, 'senescence' and the process after it 'PCD'. However, this runs into several problems. It is counter to the historical definitions of senescence, both in animal and plant science, which stipulate that senescence is programmed and directly ends in death. It would also mean that only leaves and shoots show senescence, whereas several other plant parts, where reversal has not (yet) been shown, have no senescence, but only PCD. This conflicts with ordinary usage (as in root and flower senescence). Moreover, a programme can be reversible and therefore it is not counter to logic to regard the cell death programme as potentially reversible. In green leaf cells a decision to die, in a programmed way, has been taken, in principle, before the cells start to remobilize their contents (that is, before visible yellowing) and only rarely is this decision reversed. According to the arguments developed here there are no good reasons to separate a senescence phase and a subsequent PCD phase. Rather, it is asserted, senescence in cells is the same as PCD and the two are fully synchronous.  相似文献   

18.
Proper growth and development of multicellular organisms require the tight regulation of cell growth, cell division and cell death. A recent study has identified a novel regulatory link between two of these processes: cell growth and cell death.  相似文献   

19.
Despite its early discovery and high sequence homology to the other VEGF family members, the biological function of VEGF-B remained debatable for a long time, and VEGF-B has received little attention from the field thus far. Recently, we and others have found that (1) VEGF-B is a potent survival factor for different types of cells by inhibiting apoptosis via suppressing the expression of BH3-only protein and other apoptotic/cell death-related genes. (2) VEGF-B has a negligible role in inducing blood vessel growth in most organs. Instead, it is critically required for blood vessel survival. VEGF-B targeting inhibited pathological angiogenesis by abolishing blood vessel survival in different animal models. (3) Using different types of neuro-injury and neurodegenerative disease models, VEGF-B treatment protected endangered neurons from apoptosis without inducing undesired blood vessel growth or permeability. Thus, VEGF-B is the first member of the VEGF family that has a potent survival/anti-apoptotic effect, while lacking a general angiogenic activity. Our work thus advocates that the major function of VEGF-B is to act as a “survival,” rather than an “angiogenic” factor and implicates a therapeutic potential of VEGF-B in treating different types of vascular and neurodegenerative diseases.Key words: VEGF-B, survival factor, angiogenesis, apoptosis, vascular biology  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号