首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriorhodopsin (bR) in the native purple membrane, in wild type expressed in E. coli and reconstituted in lipid vesicles, and its constituted mutants with substitutions of Tyr-185 by Phe all are found to have different visible retinal CD spectra. The results strongly suggest that the environment of the retinal in bR determines the sign and heterogeneity of its visible retinal CD spectrum. This supports the recent proposal that the observed biphasic CD spectrum of bR is due to the superposition of the CD spectra having opposite signs of more than one type of bR rather than due to exciton coupling.  相似文献   

2.
Over a decade and a half ago, when the first visible membrane suspension circular dichroic (CD) spectrum of the purple membrane (PM) was presented, two mechanisms were proposed to account for the observed biphasic shaped CD band: (a) excitonic interactions among the retinals of the sole protein bacteriorhodopsin (bR) in the crystalline structure of the PM, and (b) combination of CD bands with opposite rotational strengths due to a retinal-apoprotein heterogeneity of the bR molecules or due to two possible close-lying long-wavelength transitions of the retinal of the bR with opposite rotational strengths. Since that time, an impressive body of experimental and theoretical evidence has been accumulated, mostly consistent with an exciton model but many at serious odds with any heterogeneity or multiple transition model. Recently, a number of articles have appeared reporting analyses of new experimental observations which are proposed to cast serious doubts on the viability of the exciton model, and therefore, may revive the heterogeneity or multiple transition model as an explanation for the unique shape of the CD band of the PM. The intent of this article is to demonstrate that if all observations found in literature baring on this question are considered in toto and in a consistent manner, they can be interpreted without exception by excitons, and furthermore, that there is no plausible evidence available to warrant the revival of the heterogeneity or multiple transition model as an explanation for the unique shape of the biphasic CD band of the PM.  相似文献   

3.
We observed optical rotation of the plane of polarization of the second harmonic (SH) radiation at 532 nm (in resonance with the retinal absorption) generated in reflection geometry in Langmuir-Blodgett film of bacteriorhodopsin (bR). The analysis of the experimental data showed that this effect arises from the nonvanishing contribution of the antisymmetrical part of the hyperpolarizability tensor. This requires that the dipole moment of the resonant electronic transition, the change of the dipole moment upon electronic excitation, and the long axis of the retinal not be coplanar. Such conditions are satisfied only if the retinal has a nonplanar geometry, a conclusion that could lend support to the heterogeneity model of the origin of the biphasic band shape of the linear CD spectrum of the retinal in bR. On the basis of our theoretical analysis, we were able to estimate the angle between the induced dipole moment and the plan that contains the long axis of the chromophore and the transition dipole moment of the retinal absorption.  相似文献   

4.
Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of bacteriorhodopsin (bR) that changes in different states of the protein. The experiments are targeted to the active site of bR through 13C labeling of both the retinal chromophore and the Lys side chains of the protein. The time course of the rotor-driven magnetization exchange between a pair of 13C nuclei is then observed to determine the dipolar coupling and therefore the internuclear distance. Using this approach, we have measured the distance from [14-13C]retinal to [epsilon-13C]Lys216 in dark-adapted bR in order to examine the structure of the retinal-protein linkage and its role in coupling the isomerizations of retinal to unidirectional proton transfer. This distance depends on the configuration of the intervening C=N bond. The 3.0 +/- 0.2 A distance observed in bR555 demonstrates that the C=N bond is syn, and the 4.1 +/- 0.3 A distance observed in bR568 demonstrates that the C=N bond is anti. These direct distance determinations independently confirm the configurations previously deduced from solid-state NMR chemical shift and resonance Raman vibrational spectra. The spectral selectivity of rotational resonance allows these two distances to be measured independently in a sample containing both bR555 and bR568; the presence of both states and of 25% lipid in the sample demonstrates the use of rotational resonance to measure an active site distance in a membrane protein with an effective molecular mass of about 85 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Friedman N  Ottolenghi M  Sheves M 《Biochemistry》2003,42(38):11281-11288
The special trimeric structure of bacteriorhodopsin (bR) in the purple membrane of Halobacterium salinarum, and especially, the still controversial question as to whether the three protein components are structurally and functionally identical, have been subject to considerable work. In the present work, the problem is approached by studying the reconstitution reaction of the bR apo-protein with all-trans retinal, paying special attention to the effects of the apo-protein/retinal (P:R) ratio. The basic observation is that at high P:R values, the reconstitution reaction proceeds via two distinct, fast and slow, pathways associated with two different pre-pigment precursors absorbing at 430 nm (P(430)) and 400 nm (P(400)), respectively. These two reactions, exhibiting 2:1 (P(430)/P(400)) amplitude ratios, are markedly affected by the P:R value. The principal feature is the acceleration of the P(400) --> bR transition at low P:R ratios. The data are interpreted in terms of a scheme in which the added retinal first occupies two protein retinal traps, R(1) and R(2), from which it is transferred to two spectroscopically distinct binding sites corresponding to the two pre-pigments, P(430) and P(400), respectively. Two noncovalently bound retinal molecules occupy two P(430) sites of the bR trimer, while one (P(400)) occupies the third. Binding is completed by generating the retinal-protein covalent bond. Analogous experiments were also carried out with an aromatic bR chromophore and with the D85N bR mutant. The accumulated data clearly point out the heterogeneity of the binding reaction intermediates, in which two are clearly distinct from the third. However, CD spectroscopy strongly suggests that even the two P(430) sites are not structurally identical. The heterogeneity of the P intermediates in the binding reaction can be accounted for, either by being induced by cooperativity or by an intrinsic heterogeneity that is already present in the apoprotein. The question as to whether the final reconstituted pigment, as well as native bR, are nonhomogeneous should be the subject of future studies.  相似文献   

6.
F M Loxsom  L Tterlikkis  W Rhodes 《Biopolymers》1971,10(12):2405-2420
The optical absorption and circular dichroism (CD) of poly-L -alanine in an α-helical conformation are computed in terms of monomer properties by use of Bogoliubov exciton theory (a non-perturbation method). It was shown earlier that a proper formulation of the theory of CD for large molecular systems permits the use of periodic boundary conditions, a feature which greatly simplifies calculations as well as conceptual understanding. If is found that the shape of the observed CD spectrum can be explained in terms of the two rotational strength components and an electric dipole strength component referred to as the helix term. Comparisons of the results of perturbation theory and Bogoliubov exciton theory show that perturbation theory is valid for absorption but is inadequate for CD if the coupling among monomers is sufficiently large lo predict the observed hypochromism.  相似文献   

7.
In order to determine the origin of the bisignate CD spectra of native purple membrane, heterochromophoric analogues containing bacteriorhodopsin regenerated with native all-trans-retinal and retinal analogues were investigated. The data collected for the purple membrane samples containing two different chromophores suggest the additive character of the CD spectra. This conclusion was supported by a series of spectra using 5,6-dihydroretinal and 3-dehydroretinal and by using 33% regenerated PM in buffer and in presence of osmolytes. Our results support the idea of conformational heterogeneity of the chromophores in the bR in the trimer, suggesting that the three bR subunits in the trimer are not conformationally equal, and therefore, the bisignate CD spectrum of bR in the purple membrane occurs rather due to a superposition of the CD spectra from variously distorted bR subunits in the trimer than interchromophoric exciton-coupling interactions.  相似文献   

8.
Kinetic investigations of irreversible photobleaching of bacteriorhodopsin (bR) in purple membrane (PM) at high temperature have previously shown two kinds of bR species upon light illumination. The bR species consist of kinetically fast- and slow-denatured components, whose proportions were dependent upon structural changes in dark, as shown by CD. In order to elucidate electrostatic contribution on the heterogeneous stability and the bR structure in PM, photobleaching behaviour and structural changes over a wide pH range were investigated by kinetics as well as various spectroscopic techniques. Kinetics revealed that photobleaching below pH 9 obeyed double-exponential functions, whereas measurements above pH 10 were characterized by a single-decay component. FT-IR deconvoluted spectra showed a alpha(II)-to-alpha(I) transition in the transmembrane helices around pH 10. Near-IR Raman scattering spectra demonstrated the equilibrium shift of retinal isomers from all trans to 13-cis form. Near-UV CD spectra suggested configurational changes in the aromatic residues around the retinal pocket. An exciton-to-positive transition in visible CD spectrum was observed. This indicates disorganization in the 2D-crystalline lattice of PM, which occurred concomitantly with the changes above pH 10. A model for the changes in kinetic behaviour and molecular structure around pH 10 is discussed, focusing on changes in charge distribution upon alkalinization.  相似文献   

9.
The absorption maximum (568 nm) of light-adapted bacteriorhodopsin bR568 undergoes reversible changes after acidification. At pH 2.9, the absorption shifts to 605 nm (forming bR605) and it blue shifts to 565 nm, after further acidification to pH approximately 0.5 (forming bR565). Molecular models accounting for such acid-induced changes are relevant to the structure and function of bacteriorhodopsin. In the present study we approached the problem by applying artificial bR pigments based on selectively modified synthetic retinals. This may allow direct identification of the specific regions in the retinal binding site where the above changes in the protein-retinal interactions take place. We investigated the spectroscopic effects of acid in a variety of artificial pigments, including cyaninelike retinals, retinals bearing bulky groups at C4, short polyenes, and retinals in which the beta-ionone ring was substituted by aromatic rings. The results provide direct evidence for the hypothesis that the generation of bR605 is due to changes in polyene-opsin interactions in the vicinity of the Schiff base linkage. The second transition (to bR565) was not observed in artificial pigments bearing major changes in the ring structure of the retinal. Two approaches accounting for this observation are presented. One argues that the generation of bR565 is associated with acid-induced changes in retinal-protein interactions in the vicinity of the retinal ring. The second involves changes in polyene-opsin interactions in the vicinity of the Schiff base linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A Aharoni  M Ottolenghi  M Sheves 《Biochemistry》2001,40(44):13310-13319
It has previously been shown that, in mutants lacking the Lys-216 residue, protonated Schiff bases of retinal occupy noncovalently the bacteriorhodopsin (bR) binding site. Moreover, the retinal-Lys-216 covalent bond is not a prerequisite for initiating the photochemical and proton pump activity of the pigment. In the present work, various Schiff bases of aromatic polyene chromophores were incubated with bacterioopsin to give noncovalent pigments that retain the Lys-216 residue in the binding site. It was observed that the pigment's absorption was considerably red-shifted relative to the corresponding protonated Schiff bases (PSB) in solution and was sensitive to Schiff base linkage substitution. Their PSB pK(a) is considerably elevated, similarly to those of related covalently bound pigments. However, the characteristic low-pH purple to blue transition is not observed, but rather a chromophore release from the binding site takes place that is characterized by a pK(a) of approximately 6 (sensitive to the specific complex). It is suggested that, in variance with native bR, in these complexes Asp-85 is protonated and Asp-212 serves as the sole negatively charged counterion. In contrast to the bound analogues, no photocycle could be detected. It is suggested that a specific retinal-protein geometrical arrangement in the binding site is a prerequisite for achieving the selective retinal photoisomerization.  相似文献   

11.
The pH dependence of the subpicosecond decay of the retinal photoexcited state in bacteriorhodopsin (bR) is determined in the pH range 6.8-11.3. A rapid change in the decay rate of the retinal photoexcited state is observed in the pH range 9-10, the same pH range in which a rapid change in the M412 formation kinetics was observed. This observation supports the previously proposed heterogeneity model in which parallel photocycles contribute to the observed pH dependence of the M412 formation kinetics in bR.  相似文献   

12.
Bacteriorhodopsin (bR) is characterized by a retinal-protein protonated Schiff base covalent bond, which is stable for light absorption. We have revealed a light-induced protonated Schiff base hydrolysis reaction in a 13-cis locked bR pigment (bR5.13; lambda(max) = 550 nm) in which isomerization around the critical C13==C14 double bond is prevented by a rigid ring structure. The photohydrolysis reaction takes place without isomerization around any of the double bonds along the polyene chain and is indicative of protein conformational alterations probably due to light-induced polarization of the retinal chromophore. Two photointermediates are formed during the hydrolysis reaction, H450 (lambda(max) = 450 nm) and H430 (lambda(max) = 430 nm), which are characterized by a 13-cis configuration as analyzed by high-performance liquid chromatography. Upon blue light irradiation after the hydrolysis reaction, these intermediates rebind to the apomembrane to reform bR5.13. Irradiation of the H450 intermediate forms the original pigment, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to bR5.13. Electron paramagnetic resonance (EPR) spectroscopy indicates that the cytoplasmic side of bR5.13 resembles the conformation of the N photointermediate of native bR. Furthermore, using osmotically active solutes, we have observed that the hydrolysis rate is dependent on water activity on the cytoplasmic side. Finally, we suggest that the hydrolysis reaction proceeds via the reversed pathway of the binding process and allows trapping a new intermediate, which is not accumulated in the binding process.  相似文献   

13.
We compared (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacterio-opsin (bO), produced either by bleaching bR with hydroxylamine or from a retinal-deficient strain, with those of bacteriorhodopsin (bR), in order to gain insight into the conformational changes of the protein backbone that lead to correct folding after retinal is added to bO. The observed (13)C NMR spectrum of bO produced by bleaching is not greatly different from that of bR, except for the presence of suppressed or decreased peak-intensities. From careful evaluation of the intensity differences between cross polarization magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) spectra, it appears that the reduced peak-intensities arise from reduced efficiency of cross polarization or interference of internal motions with proton decoupling frequencies. In particular, the E-F and F-G loops and some transmembrane helices of the bleached bO have acquired internal motions whose frequencies interfere with proton decoupling frequencies. In contrast, the protein backbone of the bO from the retinal-negative cells is incompletely folded. Although it contains mainly a-helices, its very broad (13)C NMR signals indicate that its tertiary structure is different from bR. Importantly, this changed structure is identical in form to that of bleached bO from wild-type bR after it was regenerated with retinal in vitro, and bleached with hydroxylamine. We conclude that the binding of retinal is essential for the correct folding of bR after it is inserted in vitro into the lipid bilayer, and the final folded state does not revert to the partially folded form upon removal of the retinal.  相似文献   

14.
本文用吸收光谱和可见圆二色谱研究了不同浓度的山莨菪碱对紫膜中菌紫质结构的影响,并设计了用不同浓度的去垢剂Triton X-100作为脂环境的扰动剂,研究山莨菪碱对菌紫质的影响与膜脂关系的实验.结果表明山莨菪碱不仅影响菌紫质分子本身的构象变化而且扰动了菌紫质分子之间的激子偶联作用.通过吸收差光谱技术表明山莨菪碱对菌紫质结构的影响与膜脂密切相关并指出紫膜中菌紫质的三体结构对膜功能的贡献是不容忽视的.  相似文献   

15.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Summary. Circular dichroism (CD) spectroscopy was employed for native (wild type, WT) bacteriorhodopsin (bR) and several mutant derivatives: R134K, R134H, R82Q, S35C, L66C, and R134C/E194C. Comparative analysis of the CD spectra in visible range shows that only R134C/E194C exhibits biphasic CD, typical for native bR, the other mutants demonstrate CD spectra with significantly smaller or absent negative band. Since the biphasic CD is a feature of hexagonal lattice structure composed by bR trimers in the purple membrane, these mutants and WT were examined by cross-linking studies, which confirmed the same trend towards trimeric organization. Therefore, a single amino acid substitution may lead to drastically different CD spectra without disruption of bR trimeric organization. Thus, although disruption of bR trimeric crystalline lattice structure (e.g., solubilization with detergents) directly results in the disappearance of characteristic bilobe in visible CD, the lack of the bilobe in the CD alone does not predict the absence of trimers.  相似文献   

18.
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.  相似文献   

19.
We examined the effects of volatile anesthetics on the structure of the bacteriorhodopsin in the purple membrane by measurements of the absorption spectrum and the visible circular dichroism (CD) spectrum and assay of the retinal composition. As the concentrations of halothane, enflurane and methoxyflurane were increased, the absorption at 560 nm decreased but that at 480 nm increased with an isosbestic point around 510 nm. These anesthetic-induced spectroscopic changes were reversible. The CD spectrum showed the biphasic pattern with a positive and a negative band. As the concentration of halothane was increased from 4 mM to 8mM, the negative band reversibly diminished more drastically than the positive band, and at 8 mM of halothane the positive band shifted to around 480 nm. These results show that halothane disturbed the exciton coupling among bacteriorhodopsin molecules. The retinal isomer composition was analyzed using high performance liquid chromatography. The ratio of 13-cis- to all-trans-retinal was 47:53, 34:66 and 19:81 at control, 7.4 mM and 14.9 mM enflurane, respectively. After elimination of enflurane, the ratio returned to the control value. These findings indicate that volatile anesthetic directly affect a bacteriorhodopsin in the purple membrane and induce conformational changes in it.  相似文献   

20.
The circular dichroism (CD) spectra and the kinetics of the M412 formation have been determined and compared for bacteriorhodopsin (bR) partially delipidated by the addition of Triton X-100 and partially reconstituted by the addition of retinal to apoprotein at pH 6.8 and 22°C. As the degree of delipidation increases or the fraction of reconstitution decreases, the following observations are made: (a) the shape of the visible CD band changes from biphasic, as found in bR, to a single monomer type band; (b) the CD spectra and the deprotonation rate constants change in a similar way; (c) the relative amplitudes of the components of the deprotonation kinetics do not change upon reconstitution, but change greatly upon delipidation. These results lead to the conclusion that the CD band shape as well as the deprotonation rate constants are sensitive to one type of perturbation, which is linked to the retinal structure within the protein environment, whereas the relative amplitudes of the components of the deprotonation kinetics are sensitive to another type, which may be linked to acid-base equilibria of the amino acid side groups within the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号