首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An intracellular bacterium from Ixodes ricinus ticks collected in Italy was characterized by electron microscopy (EM), PCR sequencing of the 16S rRNA gene, molecular phylogenetic analysis, and in situ hybridization (ISH). This bacterium was shown by EM to be present in the cytoplasm, as well as in the mitochondria of ovarian cells. When universal 16S rRNA bacterial primers were used, PCR amplification of ovarian DNA followed by cloning and sequencing resulted in the same sequence being found in each sample. Phylogenetic analysis of this sequence showed that the bacterium from which it was derived, tentatively designated IricES1, is part of a novel clade in the alpha subdivision of the Proteobacterium: ISH and PCR assays of various tissues performed with oligonucleotides specific for the IricES1 16S rRNA showed that IricES1 is restricted to ovarian cells. Based on the results obtained, we inferred that the bacteria seen by EM in ovarian cells are a single type of bacteria, corresponding to IricES1. PCR screening of 166 ticks from various parts of Italy and one site in England showed that IricES1 was present in 96% of adult females and 44% of nymphs (unsexed). No adult males were found to be infected. Despite the apparent parasitism of host mitochondria by IricES1, the available information suggests that the bacterium has an obligate relationship with its host, although this must be confirmed.  相似文献   

2.
We have recently performed molecular characterisation of an intracellular alpha-proteobacterium, named IricES1, which resides in the ovarian tissue of female Ixodes ricinus ticks from Italy. A unique characteristic of this bacterium is its ability to invade the mitochondria of the cells in which it resides. Although some ultrastructural studies have been performed on close relatives of this bacterium from I. ricinus in England and Switzerland, a number of questions remain about its movement within ovarian tissues and mitochondria. We have performed the first detailed ultrastructural examination of IricES1 in engorged female adult I. ricinus. Among our findings was that the bacterium enters mitochondria in a similar way to that employed by the 'predatory' bacterium Bdellovibro bacteriovorus, that is, between the inner and outer membranes. It then appears to multiply, with the new 'colony' consuming the mitochondrial matrix. Despite having many of their mitochondria consumed, oocytes appear to develop normally, and the bacteria are likely to be vertically transferred to all eggs.  相似文献   

3.
The tick Ixodes ricinus is responsible for the transmission of a number of bacterial, protozoan and viral diseases to humans and animals in Europe and Northern Africa. Female I. ricinus from England, Switzerland and Italy have been found to harbour an intracellular alpha-proteobacterium, designated IricES1, within the cells of the ovary. IricES1 is the only prokaryote known to exist within the mitochondria of any animal or multicellular organism. To further examine the distribution, prevalence and mode of transmission of IricES1, we performed polymerase chain reaction screening of I. ricinus adults from 12 countries across its geographic distribution, including tick colonies that have been maintained in the laboratory for varying periods of time. IricES1 was detected in 100% of field-collected female ticks from all countries examined (n = 128), while 44% of males were found to be infected (n = 108). Those males that are infected appear to harbour fewer bacteria than females. Sequencing of fragments of the 16S rRNA and gyrB genes revealed very low nucleotide diversity among various populations of IricES1. Transmission of IricES1 from engorged adult females to eggs was found to be 100% (n = 31). In tick colonies that had been maintained in the laboratory for several years, a relatively low prevalence was found in females (32%; n = 25). To our knowledge, IricES1 is the most widespread and highly prevalent of any tick-associated symbiont.  相似文献   

4.
Lo N  Beninati T  Sacchi L  Genchi C  Bandi C 《Parassitologia》2004,46(1-2):123-126
Ticks are known to carry and transmit a number of microbial agents that cause diseases in humans and animals. Among these are members of the order Rickettsiales (alpha-proteobacteria), which include the genera Rickettsia and Ehrlichia. The most common and well-known Rickettsial human disease in Europe is Mediterranean Spotted Fever (MSF), caused by Rickettsia conorii. In recent years, a number of new Rickettsia species have been discovered in Europe, some of which have been shown to be pathogenic to humans. These discoveries have been facilitated by use of sequence-based molecular identification techniques. In Italy, it is generally believed that R. conorii is the only Rickettsia species present, and clinical tests for MSF rely on antigens raised against this bacterium. We are currently undertaking a molecular screening study of Rickettsiales-bacteria in ticks from various regions of Italy, to check for the potential presence of species from this order recently discovered in other parts of Europe. So far, we have identified a number of additional species in ticks collected from northern, central and southern regions. These include the known pathogens R. helvetica and R. slovaca as well as two species which may or may not be of medical relevance: R. monacensis and R. sp. IRS4. As a part of this survey, we have identified a novel alphaproteobacterium from the medically important tick Ixodes ricinus. This bacterium, tentatively named IricES1, has the unusual property of existing within the mitochondria, as well as the cytoplasm, of ovarian cells. To our knowledge, this is the only known example of a bacterium that is able to enter the mitochondria of animals. Our recently published electron microscopic data indicates that the bacterium enters mitochondria between the inner and outer membranes, and then proceeds to consume the inner mitochondrial matrix. We will present further data on this bacterium, including: 1) its phylogenetic position based on various molecular sequences, 2) its localization within the tick based on in situ hybridization; 3) its distribution among tick populations in Europe; 4) preliminary data on attempts at culturing this bacterium in a variety of cell types. Possible interactions between the bacterium and its host will be discussed. Ticks are known to carry and transmit a number of microbial agents that cause diseases in humans and animals. Among these are members of the order Rickettsiales (alpha-proteobacteria), which include the genera Rickettsia and Ehrlichia. The most common and well-known Rickettsial human disease in Europe is Mediterranean Spotted Fever (MSF), caused by Rickettsia conorii. In recent years, a number of new Rickettsia species have been discovered in Europe, some of which have been shown to be pathogenic to humans. These discoveries have been facilitated by use of sequence-based molecular identification techniques. In Italy, it is generally believed that R. conorii is the only Rickettsia species present, and clinical tests for MSF rely on antigens raised against this bacterium. We are currently undertaking a molecular screening study of Rickettsiales-bacteria in ticks from various regions of Italy, to check for the potential presence of species from this order recently discovered in other parts of Europe. So far, we have identified a number of additional species in ticks collected from northern, central and southern regions. These include the known pathogens R. helvetica and R. slovaca as well as two species which may or may not be of medical relevance: R. monacensis and R. sp. IRS4. As a part of this survey, we have identified a novel alphaproteobacterium from the medically important tick Ixodes ricinus. This bacterium, tentatively named IricES1, has the unusual property of existing within the mitochondria, as well as the cytoplasm, of ovarian cells. To our knowledge, this is the only known example of a bacterium that is able to enter the mitochondria of animals. Our recently published electron microscopic data indicates that the bacterium enters mitochondria between the inner and outer membranes, and then proceeds to consume the inner mitochondrial matrix. We will present further data on this bacterium, including: 1) its phylogenetic position based on various molecular sequences, 2) its localization within the tick based on in situ hybridization; 3) its distribution among tick populations in Europe; 4) preliminary data on attempts at culturing this bacterium in a variety of cell types. Possible interactions between the bacterium and its host will be discussed.  相似文献   

5.
An embryonic cell line (DAE100) of the Rocky Mountain wood tick, Dermacentor andersoni, was observed by microscopy to be chronically infected with a rickettsialike organism. The organism was identified as a spotted fever group (SFG) rickettsia by PCR amplification and sequencing of portions of the 16S rRNA, citrate synthase, Rickettsia genus-specific 17-kDa antigen, and SFG-specific 190-kDa outer membrane protein A (rOmpA) genes. Sequence analysis of a partial rompA gene PCR fragment and indirect fluorescent antibody data for rOmpA and rOmpB indicated that this rickettsia was a strain (DaE100R) of Rickettsia peacockii, an SFG species presumed to be avirulent for both ticks and mammals. R. peacockii was successfully maintained in a continuous culture of DAE100 cells without apparent adverse effects on the host cells. Establishing cell lines from embryonic tissues of ticks offers an alternative technique for isolation of rickettsiae that are transovarially transmitted.  相似文献   

6.
A consensus TaqMan real-time PCR test targeting the chromosomal flaB gene of Borrelia burgdorferi sensu lato was constructed. The test was compared with a recently published generic Light Upon eXtension (LUX) 16S rRNA real-time PCR test (Wilhelmsson et al. in J Clin Microbiol 48:4169–4176, 2010) on material consisting of 242 Ixodes ricinus ticks collected from dogs and cats in Northern Norway (n?=?139) and Telemark County in Southern Norway (n?=?103). Ticks positive in either test were further tested by nested PCR amplification of the 5S-23S rRNA intergenic-spacer region followed by sequencing for species identification. A tick was defined as Borrelia positive if two of three tests were positive. Thirty-four of the 242 (14?%) ticks satisfied this definition of positivity. Of these ticks 32 were positive both in the rRNA and flaB test, while two were positive only in the rRNA test. One tick was positive only in the rRNA test and was considered false positive since PCR for sequencing failed. The sensitivity of the flaB test was 94?% and the specificity 100?%. It was possible to determine the species present using Tm analysis. Among ticks from Northern Norway the prevalence of Borrelia was 13?%, whereas the prevalence in Telemark was 16?%. Among identified species (n?=?33) B. afzelii was found in 16 (47?%), B. garinii in 15 (44?%) and B. valaisiana in 2 (6?%) ticks, respectively. The flaB test is a rapid, sensitive and specific test for detection and quantification of Borrelia burgdorferi s.l. in I. ricinus ticks. This is the first report on Borrelia prevalence in I. ricinus in Northern Norway.  相似文献   

7.
The hard tick Ixodes ricinus (Ixodidae) is the sole animal thus far shown to harbour an intra-mitochondrial bacterium, which has recently been named Midichloria mitochondrii. The objectives of this work were (i) to screen ixodid ticks for Midichloria-related bacteria and (ii) to determine whether these bacteria exploit the intra-mitochondrial niche in other tick species. Our main goal was to discover further models of this peculiar form of symbiosis. We have thus performed a PCR screening for Midichloria-related bacteria in samples of ixodid ticks collected in Italy, North America and Iceland. A total of 7 newly examined species from 5 genera were found positive for bacteria closely related to M. mitochondrii. Samples of the tick species Rhipicephalus bursa, found positive in the PCR screening, were analysed with transmission electron microscopy, which revealed the presence of bacteria both in the cytoplasm and in the mitochondria of the oocytes. There is thus evidence that bacteria invade mitochondria in at least 2 tick species. Phylogenetic analysis on the bacterial 16S rRNA gene sequences generated from positive specimens revealed that the bacteria form a monophyletic group within the order Rickettsiales. The phylogeny of Midichloria symbionts and related bacteria does not appear completely congruent with the phylogeny of the hosts.  相似文献   

8.
An uncultured bacterium associated with the ectomycorrhizal fungus Tuber borchii Vittad. was identified as a novel member of the Cytophaga-Flexibacter-Bacteroides group. Utilizing a quantitative PCR targeting the 16S rRNA gene, we relatively quantified this bacterium in the host. The estimated number of bacteria was found to be approximately 10(6) cells per 30-day-old T. borchii mycelium culture. This represents the first molecular attempt to enumerate an uncultured bacterium associated with a mycorrhizal fungus.  相似文献   

9.
In Australia, a conclusive aetiology of Lyme disease-like illness in human patients remains elusive, despite growing numbers of people presenting with symptoms attributed to tick bites. In the present study, we surveyed the microbial communities harboured by human-biting ticks from across Australia to identify bacteria that may contribute to this syndrome. Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial 16S rRNA genes in DNA samples from individual Ixodes holocyclus (n = 279), Amblyomma triguttatum (n = 167), Haemaphysalis bancrofti (n = 7), and H. longicornis (n = 7) ticks. The 16S amplicons were sequenced on the Illumina MiSeq platform and analysed in USEARCH, QIIME, and BLAST to assign genus and species-level taxonomies. Nested PCR and Sanger sequencing were used to confirm the NGS data and further analyse novel findings. All 460 ticks were negative for Borrelia spp. by both NGS and nested PCR analysis. Two novel “Candidatus Neoehrlichia” spp. were identified in 12.9% of I. holocyclus ticks. A novel Anaplasma sp. was identified in 1.8% of A. triguttatum ticks, and a novel Ehrlichia sp. was identified in both A. triguttatum (1.2%) ticks and a single I. holocyclus (0.6%) tick. Further phylogenetic analysis of novel “Ca. Neoehrlichia”, Anaplasma and Ehrlichia based on 1,265 bp 16S rRNA gene sequences suggests that these are new species. Determining whether these newly discovered organisms cause disease in humans and animals, like closely related bacteria do abroad, is of public health importance and requires further investigation.  相似文献   

10.
The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis.  相似文献   

11.
Genomic analysis has revealed heterogeneity among bacterial 16S rRNA gene sequences within a single species; yet the cause(s) remains uncertain. Generalized transducing bacteriophages have recently gained recognition for their abundance as well as their ability to affect lateral gene transfer and to harbor bacterial 16S rRNA gene sequences. Here, we demonstrate the ability of broad-host-range, generalized transducing phages to acquire 16S rRNA genes and gene sequences. Using PCR and primers specific to conserved regions of the 16S rRNA gene, we have found that generalized transducing phages (D3112, UT1, and SN-T), but not specialized transducing phages (D3), acquired entire bacterial 16S rRNA genes. Furthermore, we show that the broad-host-range, generalized transducing phage SN-T is capable of acquiring the 16S rRNA gene from two different genera: Sphaerotilus natans, the host from which SN-T was originally isolated, and Pseudomonas aeruginosa. In sequential infections, SN-T harbored only 16S rRNA gene sequences of the final host as determined by restriction fragment length polymorphism analysis. The frequency of 16S rRNA gene sequences in SN-T populations was determined to be 1 × 10−9 transductants/PFU. Our findings further implicate transduction in the horizontal transfer of 16S rRNA genes between different species or genera of bacteria.  相似文献   

12.
An embryonic cell line (DAE100) of the Rocky Mountain wood tick, Dermacentor andersoni, was observed by microscopy to be chronically infected with a rickettsialike organism. The organism was identified as a spotted fever group (SFG) rickettsia by PCR amplification and sequencing of portions of the 16S rRNA, citrate synthase, Rickettsia genus-specific 17-kDa antigen, and SFG-specific 190-kDa outer membrane protein A (rOmpA) genes. Sequence analysis of a partial rompA gene PCR fragment and indirect fluorescent antibody data for rOmpA and rOmpB indicated that this rickettsia was a strain (DaE100R) of Rickettsia peacockii, an SFG species presumed to be avirulent for both ticks and mammals. R. peacockii was successfully maintained in a continuous culture of DAE100 cells without apparent adverse effects on the host cells. Establishing cell lines from embryonic tissues of ticks offers an alternative technique for isolation of rickettsiae that are transovarially transmitted.  相似文献   

13.
The physiology of ticks supports a diverse community of non-pathogenic and pathogenic organisms. This study aims to initially characterize the microbial community present within colony-reared Amblyomma americanum using PCR of the variable region 5 of the 16S rRNA gene followed by semiconductor sequencing and classification of sequence data using the Ribosomal Database Project and MG-RAST analysis tools. Comparison of amplicon library datasets revealed changes in the microbiomes in newly engorged nymphs, newly-molted adults, and aged adults, as well as ticks exposed to different environmental conditions. These preliminary data support the concept that microbe survivorship and diversity are partially dependent upon environmental variables and the sequence of blood feeding, molting, and aging. The maintenance and/or emergence of pathogens in ticks may be dependent in part on temporal changes in the microbial community of the tick microbiome.  相似文献   

14.
An intracellular bacterium was discovered in an isolate of Paramecium bursaria from a freshwater pond in Yantai, China. The bacteria were abundant and exclusively found in the cytoplasm of the host which, along with the green alga Chlorella, formed a three-partner consortium that could survive in pure water for at least one week. Cloning, sequencing and phylogenetic analysis of the bacterial 16S rRNA gene showed that the bacterium belonged to the uncultured candidate division OD1, which usually forms part of the rare biosphere. Transmission electron microscopy and fluorescence in situ hybridization (FISH) with specific probes showed that the bacteria were usually located close to the perialgal membranes of endosymbiotic Chlorella cells, and occasionally irregularly distributed throughout the host cytoplasm. The name “Candidatus Sonnebornia yantaiensis” gen. nov., sp. nov. is proposed for the new bacterium. A strongly supported monophyletic subclade, OD1-p, which included the new species, was recognized and this study highlights that protists can be important hosts for rare bacterial taxa.  相似文献   

15.
In the last few decades, molecular typing has become an important tool in taxonomic, phylogenetic and identification studies of numerous groups of bacteria, including the yersiniae. In this study, Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR), Pulsed-Field Gel Electrophoresis (PFGE), 16S rRNA gene sequencing and Multilocus Sequence Analysis (MLSA) were performed to determine the ability of these techniques to be used in taxonomy and identification of Yersinia strains. A total of 60 Yersinia strains were genotyped by ERIC-PCR and PFGE. Moreover, an in silico analysis was carried out for 16S rRNA gene sequencing and MLSA, using 68 and 49 Yersinia strains, respectively. A phylogenetic tree constructed from the ERIC-PCR, 16S rRNA gene sequencing and MLSA data grouped most of the Yersinia species into distinct species-specific clusters. In the PFGE assay these clusters were not observed. On this basis, ERIC-PCR, 16S rRNA gene sequencing and MLSA seem to be valuable techniques for use in taxonomic and identification studies of the genus Yersinia, whereas PFGE does not. Furthermore, ERIC-PCR has the advantage of being a cheaper, easier and faster assay than 16S rRNA gene sequencing or MLSA, and for these reasons can be considerate an alternative tool in taxonomic studies of yersiniae.  相似文献   

16.
The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50) were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson’s Diversity indices ranging from 1.28–89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05), collection site (P < 0.05), and sex (P < 0.1) suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that intra-species differences in microbiomes were not due solely to pathogen presence/absence, but may be also driven by vector life history factors, including environment, life stage, population structure, and host choice.  相似文献   

17.
Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd(1)-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.  相似文献   

18.
Ixodes pacificus ticks can harbor a wide range of human and animal pathogens. To survey the prevalence of tick-borne known and putative pathogens, we tested 982 individual adult and nymphal I. pacificus ticks collected throughout California between 2007 and 2009 using a broad-range PCR and electrospray ionization mass spectrometry (PCR/ESI-MS) assay designed to detect a wide range of tick-borne microorganisms. Overall, 1.4% of the ticks were found to be infected with Borrelia burgdorferi, 2.0% were infected with Borrelia miyamotoi and 0.3% were infected with Anaplasma phagocytophilum. In addition, 3.0% were infected with Babesia odocoilei. About 1.2% of the ticks were co-infected with more than one pathogen or putative pathogen. In addition, we identified a novel Anaplasmataceae species that we characterized by sequencing of its 16S rRNA, groEL, gltA, and rpoB genes. Sequence analysis indicated that this organism is phylogenetically distinct from known Anaplasma species with its closest genetic near neighbors coming from Asia. The prevalence of this novel Anaplasmataceae species was as high as 21% at one site, and it was detected in 4.9% of ticks tested statewide. Based upon this genetic characterization we propose that this organism be called ‘Candidatus Cryptoplasma californiense’. Knowledge of this novel microbe will provide awareness for the community about the breadth of the I. pacificus microbiome, the concept that this bacterium could be more widely spread; and an opportunity to explore whether this bacterium also contributes to human or animal disease burden.  相似文献   

19.
20.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号