首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.  相似文献   

3.
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the 1H, 13C, and 15N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain 15N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.  相似文献   

4.
1H, 13C and 15N chemical shift referencing in biomolecular NMR   总被引:25,自引:2,他引:23  
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS tetramethylsilane - TSP 3-(trimethylsilyl)-propionate, sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - TFE 2,2,2-trifluoroethanol - DMSO dimethyl sulfoxide  相似文献   

5.
Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts   总被引:3,自引:3,他引:0  
A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1H), 0.980 (13C), 0.996 (13C), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http://redpoll.pharmacy.ualberta.ca.  相似文献   

6.
Sticholysin I is an actinoporin, a pore forming toxin, of 176 aminoacids produced by the sea anemone Stichodactyla heliantus. Isotopically labelled 13C/15N recombinant protein was produced in E. coli. Here we report the complete NMR 15N, 13C and 1H chemical shifts assignments of Stn I at pH 4.0 and 25°C (BMRB No. 15927).  相似文献   

7.
Endothelial and monocyte-activating polypeptide II (EMAP II) is a cytokine that plays an important role in inflammation, apoptosis and angiogenesis processes in tumour tissues. Structurally, the EMAP II is a 169 amino acid residues long C-terminal domain (residues 147–312) of auxiliary tRNA binding protein p43. In spite of existence in pdb databank of two X-ray structures there are some important aspects of EMAP II cytokine function which are still not fully understood in detail. To obtain information about 3D structure and backbone dynamic processes in solution we perform structure evaluation of human EMAP II cytokine by NMR spectroscopy. The standard approach to sequence-specific backbone assignment using 3D NMR data sets was not successful in our studies and was supplemented by recently developed 4D NMR experiments with random sampling of evolution time space. Here we report the backbone and side chain 1H, 13C, and 15N chemical shifts in solution for recombinant EMAP II cytokine together with secondary structure provided by TALOS + software.  相似文献   

8.
Calcium-binding protein 1 (CaBP1) regulates inositol 1,4,5-trisphosphate receptors (InsP3Rs) and a variety of voltage-gated Ca2+ channels in the brain. We report complete NMR chemical shift assignments of Ca2+-free CaBP1 (residues 1–167, BMRB no. 15197).  相似文献   

9.
10.
As part of our NMR structure determination of the palladin Ig3 domain, we report nearly complete NMR chemical shift assignments for the 1H, 13C, and 15N nuclei.  相似文献   

11.
The magnetic shielding constant of the different 13C and 1H nuclei of a deoxyribose are calculated for the C2' endo and C3' endo puckerings of the furanose ring as a function of the conformation about the C4'C5' bond. For the carbons the calculated variations are of several ppm, the C3' endo puckering corresponding in most cases to a larger shielding than the C2' endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose-3' and 5' phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides. The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

12.
13.
Calcium-binding protein 1 (CaBP1) regulates inositol 1,4,5-trisphosphate receptors (InsP3Rs) and a variety of voltage-gated Ca2+ channels in the brain. We report complete NMR chemical shift assignments of Ca2+-bound CaBP1 (residues 1–167, BMRB no. 15623).  相似文献   

14.
Androcam is a calmodulin-like protein that acts as a testis-specific light chain to myosin VI during spermatogenesis in D. melanogaster. Modest, localized chemical shift changes that accompany Ca2+ binding to the androcam N-terminal lobe indicate that unlike calmodulin, androcam does not undergo a dramatic conformational change upon binding calcium. Here we report the 1H, 15N and 13C resonances of androcam in the high calcium (10 mM) state and show the extent of chemical shift changes for backbone resonances relative to the low calcium state.  相似文献   

15.
ZCCHC9 is a human nuclear protein with sequence homology to yeast Air1p/Air2p proteins which are RNA-binding subunits of the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex involved in nuclear RNA quality control and degradation in yeast. The ZCCHC9 protein contains four retroviral-type zinc knuckle motifs. Here, we report the NMR spectral assignment of the zinc knuckle region of ZCCHC9. These data will allow performing NMR structural and RNA-binding studies of ZCCHC9 with the aim to investigate its role in the RNA quality control in human.  相似文献   

16.
Summary The backbone NMR resonances of human carbonic anhydase I (HCA I) have been assigned. This protein is one of the largest monomeric proteins assigned so far. The assignment was enabled by a combination of 3D triple-resonance experiments and extensive use of amino acid-specific 15N-labeling. The obtained resonance assignment has been used to evaluate the secondary structure elements present in solution. The solution structure appears to be very similar to the crystal structure, although some differences can be observed. Proton-deuteron exchange experiments have shown that the assignments provide probes that can be used in future folding studies of HCA I.The chemical shift data have been deposited in the BioMagResBank in Madison, WI, U.S.A.  相似文献   

17.
The backbone and side chain resonance assignments of human ACS (∼22 KD), apoptosis-associated speck-like protein containing a caspase recruitment domain and a pyrin domain, have been determined by triple-resonance NMR techniques.  相似文献   

18.
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167–6173, 1997; Slater et al. Biochemistry 43(23):7601–7609, 2004), PKCε (Das et al. Biochem J 421(3):405–413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964–37972, 2004; Das et al. Protein Sci 15(9):2107–2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the 1H, 15N and 13C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.  相似文献   

19.
Abstract

It was found by 1H, 13C and 15N NMR study that substitution of 4,9-dihydro-4, 6-dimethyl-9-oxo-3-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosyl) imidazo [1,2-a]purine (wyosine triacetate, 1) at C2 position with electronegative groups CH3O and C6H5CH2O results in a noticeable electron distribution disturbance in the “left-hand” imidazole ring and a significant increase in the North conformer population of the sugar moiety.  相似文献   

20.
It was found by 1H, 13C and 15N NMR study that substitution of 4,9-dihydro-4,6-dimethyl-9-oxo-3-(2',3',5'-tri-O-acetyl-beta-D-ribofuranosyl) imidazo [1,2-a]purine (wyosine triacetate, 1) at C2 position with electronegative groups CH30 and C6H5CH2O results in a noticeable electron distribution disturbance in the "left-hand" imidazole ring and a significant increase in the North conformer population of the sugar moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号