首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that highly conserved residues that form crucial structural elements of the catalytic apparatus may be used to account for the evolutionary history of enzymes. Using saturation mutagenesis, we investigated the role of a conserved residue (Arg(526)) at the active site of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 in substrate discrimination and catalytic mechanism. This enzyme has both peptidase and esterase activities. The esterase activity of the wild-type enzyme with p-nitrophenyl caprylate as substrate is approximately 7 times higher than the peptidase activity with Ac-Leu-p-nitroanilide as substrate. However, with the same substrates, this difference was increased to approximately 150-fold for mutant R526V. A more dramatic effect occurred with mutant R526E, which essentially completely abolished the peptidase activity but decreased the esterase activity only by a factor of 2, leading to a 785-fold difference in the enzyme activities. These results provide rare examples that illustrate how enzymes can be evolved to discriminate their substrates by a single mutation. The possible structural and energetic effects of the mutations on k(cat) and K(m) of the enzyme were discussed based on molecular dynamics simulation studies.  相似文献   

2.
Schistosoma mansoni is one of the three main causative agents of human schistosomiasis, a major health problem with a vast socio-economic impact. Recent advances in the proteomic analysis of schistosomes have revealed that peptidases are the main virulence factors involved in the pathogenesis of this disease. In this context, evolutionary studies can be applied to identify peptidase families that have been expanded in genomes over time in response to different selection pressures. Using a phylogenomic approach, we searched for expanded endopeptidase families in the S. mansoni predicted proteome with the aim of contributing to the knowledge of such enzymes as potential therapeutic targets. We found three endopeptidase families that comprise leishmanolysins (metallopeptidase M8 family), cercarial elastases (serine peptidase S1 family) and cathepsin D proteins (aspartic peptidase A1 family). Our results suggest that the Schistosoma members of these families originated from successive gene duplication events in the parasite lineage after its diversification from other metazoans. Overall, critical residues are conserved among the duplicated genes/proteins. Furthermore, each protein family displays a distinct evolutionary history. Altogether, this work provides an evolutionary view of three S. mansoni peptidase families, which allows for a deeper understanding of the genomic complexity and lineage-specific adaptations potentially related to the parasitic lifestyle.  相似文献   

3.
Proteolytic enzymes and their homologues have been classified into clans by comparing the tertiary structures of the peptidase domains, into families by comparing the protein sequences of the peptidase domains, and into protein-species by comparing various attributes including domain architecture, substrate preference, inhibitor interactions, subcellular location, and phylogeny. The results are compared with the earlier classification (Rawlings and Barrett, 1993 [1]). The numbers of sequences, protein-species, families, clans and even catalytic type have substantially increased during the intervening 26 years. The alternative classifications by catalytic type and/or activity are shown not to reflect evolutionary relationships.  相似文献   

4.
The MEROPS website ( https://www.ebi.ac.uk/merops ) and database was established in 1996 to present the classification and nomenclature of proteolytic enzymes. This was expanded to include a classification of protein inhibitors of proteolytic enzymes in 2004. Each peptidase or inhibitor is assigned to a distinct identifier, based on its biochemical and biological properties, and homologous sequences are assembled into a family. Families in which the proteins share similar tertiary structures are assembled into a clan. The MEROPS classification is thus a hierarchy with at least three levels (protein‐species, family, and clan) showing the evolutionary relationship. Several other data collections have been assembled, which are accessed from all levels in the hierarchy. These include, sequence homologs, selective bibliographies, substrate cleavage sites, peptidase–inhibitor interactions, alignments, and phylogenetic trees. The substrate cleavage collection has been assembled from the literature and includes physiological, pathological, and nonphysiological cleavages in proteins, peptides, and synthetic substrates. In this article, we make recommendations about how best to analyze these data and show analyses to indicate peptidase binding site preferences and exclusions. We also identify peptidases where co‐operative binding occurs between adjacent binding sites.  相似文献   

5.
The prolyl oligopeptidase (POP) family of serine proteases includes prolyl oligopeptidase, dipeptidyl peptidase IV, acylaminoacyl peptidase and oligopeptidase B. The enzymes of this family specifically hydrolyze oligopeptides with less than 30 amino acids. Many of the POP family enzymes have evoked pharmaceutical interest as they have roles in the regulation of peptide hormones and are involved in a variety of diseases such as dementia, trypanosomiasis and type 2 diabetes. In this study we have clarified the evolutionary relationships of these four POP family enzymes and analyzed POP sequences from different sources. The phylogenetic trees indicate that the four enzymes were present in the last common ancestor of all life forms and that the beta-propeller domain has been part of the family for billions of years. There are striking differences in the mutation rates between the enzymes and POP was found to be the most conserved enzyme of this family. However, the localization of this enzyme has changed throughout evolution, as three archaeal POPs seem to be membrane bound and one third of the bacterial as well as two eukaryotic POPs were found to be secreted out of the cell. There are also considerable distinctions between the mutation rates of the different substrate binding subsites of POP. This information may help in the development of species-specific POP inhibitors.  相似文献   

6.
Intestinal dipeptidyl peptidase IV and gamma-glutamyltransferase were compared to the corresponding kidney enzymes with respect to immunological and electrophoretic properties. The influences of selected effectors on the two enzymes were also studied. The two kidney peptidases exhibited the reaction of total identity with the corresponding intestinal enzymes in immunodiffusion. Furthermore, the intestinal dipeptidyl peptidase IV and gamma-glutamyl transferase showed the same inhibition patterns as the corresponding kidney enzymes and the acceptor specificity of the intestinal gamma-glutamyl-transferase was found to be identical to that of the kidney enzyme. The electrophoretic mobilities of dipeptidyl peptidase IV from the two organs differed greatly. The difference was almost abolished by treatment with neuraminidase, suggesting that the variation in mobility was due to different contents of sialic acid. It is suggested that the intestinal brush border peptidases, dipeptidyl peptidase IV and gamma-glutamyltransferase, are closely related to the corresponding enzymes obtained from the kidney.  相似文献   

7.
Collagenase-like peptidase and seminal proteinase were isolated from human testis and human seminal plasma. The effects of both enzymes upon proteins isolated from the human ejaculate were studied. Both enzymes degraded ejaculate proteins. The data suggest that collagenase-like peptidase is responsible for the first, and seminal proteinase for the second, phase of human ejaculate liquefaction in vitro.  相似文献   

8.
Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double- center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on .  相似文献   

9.
The effect of treatment with L-3,5,3'-triiodothyronine (T3) on the levels of pyroglutamyl peptidase I and pyroglutamyl peptidase II in rat brain regions, pituitary, and serum was studied. Pyroglutamyl peptidase I cleaves pyroglutamyl peptides such as thyrotropin releasing hormone (TRH), luteinizing hormone releasing hormone, neurotensin, and bombesin, whereas pyroglutamyl peptidase II appears to be specific for TRH. Acute administration of T3 did not affect pyroglutamyl peptidase I in any of the regions studied, whereas pyroglutamyl peptidase II was significantly elevated in frontal cortex and pituitary. Treatment with T3 for 10 or 14 days significantly elevated pyroglutamyl peptidase I in pituitary, hypothalamus, olfactory bulb, hippocampus, and thalamus. Chronic T3 treatment elevated pyroglutamyl peptidase II in frontal cortex and in serum. These studies demonstrate regulation of neuropeptide degrading enzymes by thyroid hormones in vivo. This regulation may play a role in the negative feedback control of thyroid status by T3.  相似文献   

10.
Cysteine peptidase inhibitor genes (ICP) of the chagasin family have been identified in protozoan (Leishmania mexicana and Trypanosoma brucei) and bacterial (Pseudomonas aeruginosa) pathogens. The encoded proteins have low sequence identities with each other and no significant identity with cystatins or other known cysteine peptidase inhibitors. Recombinant forms of each ICP inhibit protozoan and mammalian clan CA, family C1 cysteine peptidases but do not inhibit the clan CD cysteine peptidase caspase 3, the serine peptidase trypsin or the aspartic peptidases pepsin and thrombin. The functional homology between ICPs implies a common evolutionary origin for these bacterial and protozoal proteins.  相似文献   

11.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

12.
The biogenesis of three intestinal microvillar enzymes, maltase-glucoamylase (EC 3.2.1.20), aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) and dipeptidyl peptidase IV (EC 3.4.14.5), was studied by pulse-chase labelling of pig small-intestinal explants kept in organ culture. The earliest detectable forms of the enzymes were polypeptides of Mr 225000, 140000 and 115000 respectively. These were found to represent the enzymes in a 'high-mannose' state of glycosylation, as judged by their susceptibility to treatment with endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96). After about 40-60 min of chase, maltase-glucoamylase, aminopeptidase A and dipeptidyl peptidase IV were further modified to yield the mature polypeptides of Mr 245000, 170000 and 137000 respectively, which were expressed at the microvillar membrane after 60-90 min of chase. The fact that the enzymes before reaching the microvillar membrane were found in a Ca2+-precipitated membrane fraction (intracellular and basolateral membranes), but not in soluble form, indicates that during biogenesis maltase-glucoamylase, aminopeptidase A and dipeptidyl peptidase IV are transported and assembled in a membrane-bound state.  相似文献   

13.
1. Two enzymes acting on the linear portion of oxytocin: carboxamidopeptidase (releasing Gly . NH2) and prolyl peptidase (releasing Leu-Gly . NH2) were identified in the cytoplasmic fraction of chicken liver. 2. Carboxamidopeptidase was purified 134-fold with a 23% yield, and prolyl peptiase 71-fold with a 20% yield. The specific activity of the final preparations was 181 and 96 microU/mg protein, respectively. 3. The optimum pH for carboxamidopeptidase was 6.0--6.5 and for prolyl peptidase, 7.5. Carboxamidopeptidase activity was inhibited by Mn2+, Zn2+, Ca2+, Co2+, and stimulated by EDTA; the activity of prolyl peptidase was inhibited by Zn2+ and Mn2+. The Km value of both enzymes for oxytocin was 1.5--2.4 microM.  相似文献   

14.
A Chatonnet  P Masson 《Biochimie》1986,68(5):657-667
The peptidase site of human plasma cholinesterase (butyrylcholinesterase) is distinct from its esteratic site. We found that the number of peptidase sites on an enzyme highly purified from pooled plasma is less than 0.1, as compared with 4 esteratic sites, per tetramer. However, the subunits which carry the peptidase sites are electrophoretically indistinguishable from esteratic subunits. The atypical-silent enzyme (Ea1Es1) had a much higher absolute peptidase activity when substance P was used as the substrate, and we found that the number of peptidase and esteratic sites of this enzyme was roughly the same. This suggests that the mutated esteratic site of the silent possesses a peptidase activity. The esteratic site of the usual allozyme (Eu1Eu1) has no peptidase activity towards substance P. However, a small proportion of peptidase subunits are present in all preparations of enzymes purified from the plasmas of homozygote individuals. The peptidase activity of butyrylcholinesterase might therefore correspond to a specific isoenzyme produced by an epigenetic mechanism or produced by a gene distinct from genes E1 and E2 encoding for cholinesterase subunits. However, the possibility that highly purified cholinesterase contains traces of a dipeptidylaminopeptidase cannot be completely ruled out.  相似文献   

15.
ABSTRACT. We report the characterization of cell-associated and extracellular peptidases of Bodo sp., a free-living flagellate of the Bodonidae family, order Kinetoplastida, which is considered ancestral to the trypanosomatids. This bodonid isolate is phylogenetically related to Bodo caudatus and Bodo curvifilus . The proteolytic activity profiles of Bodo sp. were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing co-polymerized gelatin, casein, hemoglobin, or bovine serum albumin as substrates. The enzymatic complex degraded gelatin better in acidic pH, and under these conditions four proteolytic bands (120, 100, 90, and 75 kDa) were detected in the cellular or extracellular extracts. Two peptidases (250 and 200 kDa) were exclusively detected with the substrate casein. All these enzymes belong to the serine peptidase class, based on inhibition by aprotinin and phenylmethylsulfonyl fluoride. This is the first biochemical characterization of peptidases in a free-living Bodo sp., potentially providing insight into the physiology of these protozoa and the evolutionary importance of peptidases to the order Kinetoplastida as some of these enzymes are important virulence factors in pathogenic trypanosomatids.  相似文献   

16.
From the observed pattern of aminopeptidase and alkaline phosphatase activities in the Baltic Sea, the question arose whether there is an interaction between the activities of both enzymes. In experiments with 0.8 m filtered seawater, the effects of commercial alkaline phosphatase on bacterial aminopeptidase, the effects of commercial peptidase on bacterial alkaline phosphatase activity (APA), and the effects of proteins, carbohydrates and inorganic nutrients on the activities of both enzymes were investigated.Addition of commercial alkaline phosphatase stimulated bacterial aminopeptidase activity and, similarly, the addition of commercial peptidase increased the APA in bacteria. The proteins, albumin and casein, stimulated aminopeptidase activity and APA simultaneously. Experiments using ammonium and glucose suggested that stimulation of APA by peptidase could be mediated by nitrogen and carbon availability. There were also some indications that stimulation of aminopeptidase activity by alkaline phosphatase functioned by catalysing phosphate release from organic phosphorus compounds.  相似文献   

17.
Mitochondrial processing peptidases   总被引:11,自引:0,他引:11  
Three peptidases are responsible for the proteolytic processing of both nuclearly and mitochondrially encoded precursor polypeptides targeted to the various subcompartments of the mitochondria. Mitochondrial processing peptidase (MPP) cleaves the vast majority of mitochondrial proteins, while inner membrane peptidase (IMP) and mitochondrial intermediate peptidase (MIP) process specific subsets of precursor polypeptides. All three enzymes are structurally and functionally conserved across species, and their human homologues begin to be recognized as potential players in mitochondrial disease.  相似文献   

18.
Proteins from organisms living in extreme conditions are of particular interest because of their potential for being templates for redesign of enzymes both in biotechnological and other industries. The crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species has been solved to 1.8 A. The structure has been compared with the structures of proteinase K from Tritirachium album Limber and Vibrio sp. PA44 in order to reveal structural explanations for differences in biophysical properties. The Serratia peptidase shares around 40 and 64% identity with the Tritirachium and Vibrio peptidases, respectively. The fold of the three enzymes is essentially identical, with minor exceptions in surface loops. One calcium binding site is found in the Serratia peptidase, in contrast to the Tritirachium and Vibrio peptidases which have two and three, respectively. A disulfide bridge close to the S2 site in the Serratia and Vibrio peptidases, an extensive hydrogen bond network in a tight loop close to the substrate binding site in the Serratia peptidase and different amino acid sequences in the S4 sites are expected to cause different substrate specificity in the three enzymes. The more negative surface potential of the Serratia peptidase, along with a disulfide bridge close to the S2 binding site of a substrate, is also expected to contribute to the overall lower binding affinity observed for the Serratia peptidase. Clear electron density for a tripeptide, probably a proteolysis product, was found in the S' sites of the substrate binding cleft.  相似文献   

19.
Escherichia coli signal peptidase (SPase) and E. coli UmuD protease are members of an evolutionary clan of serine proteases that apparently utilize a serine-lysine catalytic dyad mechanism. Recently, the crystallographic structure of a SPase inhibitor complex was solved elucidating the catalytic residues and the substrate binding subsites. Here we show a detailed comparison of the E. coli SPase structure to the native E. coli UmuD' structure. The comparison reveals that despite a very low sequence identity these functionally diverse enzymes share the same protein fold within their catalytic core and allows by analogy for the assignment of the cleavage-site orientation and substrate binding subsites in the UmuD(D') protease. The structural alignment of SPase and UmuD' predicts important mechanistic and structural similarities and differences within these newly characterized families of serine proteases.  相似文献   

20.
Separation and purification of proteolytic enzymes of Streptomyces griseus ATCC 3463 were undertaken by fractional precipitation with ethanol and ammonium sulfate followed by dialysis and finally applying zone electrophoresis on starch. In the experiment, peptidase free from proteinase and the latter enzyme free from the former were obtained. The purity was increased approximately 90-fold with the peptidase and 8-fold with the proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号