首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection with larval trematodes sometimes alters the phenotypes of their snail hosts. While some trematode species have distinct effects on host phenotypes, it is still unclear how snail phenotypes are altered when they are parasitized with multiple trematode species. Here, we report that double infection with trematode species averages the effects of parasitic alteration on host phenotype. We found that snail hosts Batillaria attramentaria (Batillariidae) infected with Cercaria batillariae (Heterophyidae) have abnormally large shells and distribute in lower areas of the intertidal zone. Snails with another dominant trematode species, the renicolid cercaria I (Renicolidae), have slightly larger shells and distribute in upper areas of the intertidal zone. A number of double infections with both trematodes was observed in this study. Snails infected with both trematode species exhibited an intermediate size and inhabited a depth between those of snails solely infected with either trematode species, suggesting that the two trematodes simultaneously affected the snail phenotypes. Because altered host phenotypes are frequently beneficial to parasites, two trematode species may compete for successful transmission through alteration of host phenotypes.  相似文献   

2.
We assessed how spatial and temporal heterogeneity and competition structure larval trematode communities in the pulmonate snail Lymnaea stagnalis . To postulate a dominance hierarchy, mark-release-recapture was used to monitor replacements of trematode species within snails over time. In addition, we sampled the trematode community in snails in different ponds in 3 consecutive years. A total of 7,623 snails (10,382 capture events) was sampled in 7 fishponds in the Jind?ich?v Hradec and T?eboň areas in South Bohemia (Czech Republic) from August 2006 to October 2008. Overall, 39% of snails were infected by a community of 14 trematode species; 7% of snails were infected with more than 1 trematode species (constituting 16 double- and 4 triple-species combinations). Results of the null-model analyses suggested that spatial heterogeneity in recruitment among ponds isolated trematode species from each other, whereas seasonal pulses in recruitment increased species interactions in some ponds. Competitive exclusion among trematodes led to a rarity of multiple infections compared to null-model expectations. Competitive relationships among trematode species were hypothesized as a dominance hierarchy based on direct evidence of replacement and invasion and on indirect evidence. Seven top dominant species with putatively similar competitive abilities (6 rediae and 1 sporocyst species) reduced the prevalence of the other trematode species developing in sporocysts only.  相似文献   

3.
We conducted the first comprehensive study on the spatiotemporal structure of trematode communities in the large-mouthed valve snail, Valvata macrostoma. A total of 1103 snails were examined monthly between May and October 2007 from Lake Konnevesi, Central Finland, from a shallow (1-2 m deep) and an offshore site (5-6 m deep), located ca. 50-70 m apart. Snails were infected by 10 trematode species. The species composition and prevalence were strikingly different between the sites with high species diversity in the shallow site (all 10 species; total prevalence of sporocysts/rediae 12.1%, metacercariae 55.4%) compared to the deeper site (3 species; prevalence 15.0% and 1.9%, respectively). This difference persisted throughout our study and is probably related to the spatial distribution of bird definitive hosts, whereas the seasonal parasite dynamics are likely to be affected by changes in the age-structure of the snail population. The probability of sporocyst infections increased with snail size, but no such trend was observed in redial or metacercarial infections which decreased with host size. Our results show that generally well-described spatiotemporal differences in trematode infection of molluscs can emerge in very narrow spatial and temporal scales, which emphasizes the importance of these factors in community studies.  相似文献   

4.
Factors that affected the component community structure of larval trematodes in the pulmonate snail Helisoma anceps in Charlie's Pond, North Carolina, were studied over a 15-mo period using a multiple mark-recapture protocol. Patent infections of 8 species were observed in 1,485 of 4,899 snails examined. Reproductive activity, population size, and survival rate of the snail population were estimated to evaluate the extent of resource availability for the parasites. Antagonistic interactions between trematode species that occurred at the infracommunity level had a neglible effect on the composition and structure of the component community. The patterns observed at this level were related to temporal heterogeneity in the abundance of infective stages (mostly miracidia), differential responses of trematode species to the diverse and constantly changing distribution of snail size and abundance, differential mortality of snails infected with certain trematode species, constant recruitment of 1 trematode species over time, and the existence of predictable disturbances such as the complete mortality of the host population and recruitment of a replacement population during a 6-8 wk period. The last factor operated as a reset mechanism for this snail-trematode system once each year. A model of patch dynamics, with snails as patch resources, best explains the organization and dynamics of this system.  相似文献   

5.
Batillaria minima is a common snail in the coastal estuaries of Puerto Rico. This snail is host to a variety of trematodes, the most common being Cercaria caribbea XXXI, a microphallid species that uses crabs as second intermediate hosts. The prevalence of infection was higher (7.1%) near mangroves than on mudflats away from mangroves (1.4%). Similarly, there was a significant positive association between the proportion of a site covered with mangroves and the prevalence of the microphallid. The association between mangroves and higher trematode prevalence is most likely because birds use mangroves as perch sites and this results in local transmission to snails.  相似文献   

6.
Abstract. The hypothesis that infecting trematodes influence the spatial distribution of the estuarine snail Ilyanassa obsoleta was tested. This work was conducted in the Savages Ditch habitat, Rehoboth Bay, DE, USA, which has an essentially flat, sandy-mud bottom bordered by saltmarsh shorelines and many infected snails. In 1996, two groups of snails were individually marked and released from one location after being screened for trematode infections. One group, transplanted from sites where snails tended not to be infected, consisted of snails that tested as uninfected. The other group consisted of snails native to Savages Ditch. Species of trematode carried by each snail was recorded. Marked snails were found and their positions were recorded until 2001. Snails were in five infection categories: (1) not infected, and infected with (2) Himasthla quissetensis , or (3) Lepocreadium setiferoides or (4) Zoogonus rubellus , or (5) with both H. quissetensis and Z. rubellus . The results show that the spatial distributions of snails depended on whether or not they were infected and, if infected, on which trematode species they carried. To complete life cycles, these parasites must accomplish transmission from the first (the snail) to the second intermediate hosts by short-lived, swimming cercariae. These data do not allow resolution of why snails distributed as they did, but sighting distributions of infected snails can be related to distributions of second hosts and it is proposed that parasites engender host snail distributions that improve chances of transmission.  相似文献   

7.
Temporal variations in the prevalence of larval trematodes in the short-lived prosobranch mudsnail Hydrobia ventrosa (Montagu) were investigated in relation to host life history and season for 4 successive years in temperate windflats of the southern Baltic Sea. The component community of trematode larvae in H. ventrosa comprises at least 10 species; families (and species) represented include Notocotylidae (1), Echinostomatidae (1 or 2), Heterophyidae (2), Monorchidae (1), Microphallidae (3 or 4), Psilostomatidae (1), and Hemiuridae (1). The notocotylid Paramonostomum alveatum was the most prevalent species, followed by the microphallids Maritrema subdolum and Microphallus sp. Trematode prevalence in H. ventrosa fluctuated seasonally. Prevalence usually peaked in summer between July and September-October and decreased in late winter-early spring. This seasonal change is chiefly explained by the life history patterns of the semelparous snail host. Hydrobia ventrosa has a maximum life span of about 2 yr and reproduces between June and November of its second calendar year. The first trematode infections appeared annually in May when the most abundant cohort of H. ventrosa, the second-calendar-year snails, mature. The prevalence continued to increase until August-September, throughout the reproductive period of the second-calendar-year snails, Prevalence decreased during winter, when most of the second-calendar-year snails died after reproduction. On the basis of longterm laboratory experiments, it has been shown that the late autumn-winter mortality was not the result of trematode infections. Seasonal patterns of prevalence were similar among the trematode species except for the monorchid Asymphylodora demeli, the only one using fish definitive hosts. Species-specific differences in the seasonal occurrence of prepatent infections and the predominance of certain larval stages in winter are interpreted as different strategies of the trematode species to survive the harsh winter conditions, or to survive the death of the first intermediate host in autumn-winter, or both.  相似文献   

8.
对科威特湾微茎科滨鹬马蹄吸虫幼虫期的中间宿主双带盾桑椹螺(Clypeomorus bifasciata)及小相手蟹(Nanosesarma minutum)的季节动态进行了研究。调查期超过一年,在检查的1 600只螺和415只蟹中, 11.8 %的螺感染了8种马蹄属线虫中的一种,且以滨鹬马蹄吸虫的感染占优势(9.9 %螺感染) ; 80 %的蟹感染滨鹬马蹄吸虫囊蚴。虽然一年四季两种宿主都会感染,但吸虫的流行和尾蚴(指成熟期感染)在夏季呈现高蜂。从螺体排出的尾蚴具有明显季节性,在此海湾必须要超过最低温度20℃。总的感染率在较大(较老)的螺里有所下降,显示吸虫影响宿主生存并随之影响宿主群体结构。囊蚴的感染丰度与蟹的个体大小有明显相关性;较大的蟹感染较多的囊蚴,显示宿主能耐受更多的吸虫。调查显示,囊蚴的感染率与蟹的大小或性别无相关性。囊蚴体外脱囊以及产卵吸虫的释放证明,成熟虫体终年存在于所有大小和性别不同的蟹里,显示从蟹到鸟的持续感染是可能的。总的来说,滨鹬马蹄吸虫在海湾的传播动态是由这两种无脊椎动物宿主来协调,并似乎是被一系列依赖于温度的活动控制,这些活动影响易感宿主种群及感染性幼虫期尾蚴和囊蚴的存在。  相似文献   

9.
To estimate isotopic changes caused by trematode parasites within a host, we investigated changes in the carbon and nitrogen isotope ratios of the freshwater snail Lymnaea stagnalis infected by trematode larvae. We measured carbon and nitrogen stable isotopes within the foot, gonad, and hepatopancreas of both infected and uninfected snails. There was no significant difference in the delta13C and delta15N values of foot and gonad between infected and uninfected snails; thus, trematode parasite infections may not cause changes in snail diets. However, in the hepatopancreas, delta15N values were significantly higher in infected than in uninfected snails. The 15N enrichment in the hepatopancreas of infected snails is caused by the higher 15N ratio in parasite tissues. Using an isotope-mixing model, we roughly estimated that the parasites in the hepatopancreas represented from 0.8 to 3.4% of the total snail biomass, including the shell.  相似文献   

10.
The infro- and component community dynamics of digenetic trematodes in a freshwater gastropod community were examined over a 33-month period. The gastropod and trematode communities were composed of 17 and 10 species respectively. A total of 9,831 snails was collected; among them, 192 belonging to 14 species were infected by larval trematodes. The size of infected snails was significantly greater than that of healthy ones, and the increase of prevalence with size/age was interpreted as related to the increased probability of ultimately becoming parasitized. The trematode community was rich in allogenic species, but the most frequent trematode (cercariaeum) was autogenic and generalist (a range of 12 snail host species). There was a significantly positive relationship between the frequency of trematode species in the community and the number of first intermediate host species. A great temporal heterogeneity occurred in the prevalence of the snails, mainly attributed to the great temporal fluctuations of snail host populations and the variability of freshwater ecological conditions. The data on the occurrence of larval trematodes in 14 host species over the 33-month study allowed indicate a significant negative correlation between the abundance of gastropods and the prevalence of trematodes.  相似文献   

11.
K. Rohde 《Oecologia》1981,49(3):344-352
Summary The population dynamics of the prosobranch snail Planaxis sulcatus and its trematode parasites on 600 m of beachrock on the southern side of Heron Island, Great Barrier Reef, were studied. Populations of Planaxis show little mixing, due to lack of long-distance movements. From March 1973 to June 1975, an increase in the numbers of small and medium-sized snails occurred, but the biomass (dry tissue weight) of the snail population did not change. Snails were infected with one species of Aspidogastrea and six species of cerariae. Infections with cercariae did not significantly affect the relative weight of the snails. Multiple infections were random, i.e. neither negative nor positive interactions between trematode species could be demonstrated. Proportions of uninfected snails and snails infected with various trematode species remained more or less constant from July 1973 to February 1975.The population dynamics of the prosobranch snail Cerithium moniliferum and its 11 species of cercariae and one species of Aspidogastrea in a small area at Heron Island were studied. Numbers of large snails decreased and numbers of small snails increased from August 1973 to June 1975. The biomass of the Cerithium population increased only slightly. Prevalence of infection changed significantly only in large snails.Infections of Cerithium moniliferum and Peristernia australiensis with an aspidogastrid species decreased strongly from January 1971 to March/April 1972 and had not recovered by mid 1975.Seasonal fluctuations could not be demonstrated for any of the snails or parasites.The data for Planaxis suggest equilibrium conditions and saturation of the habitat.  相似文献   

12.
The main features of trematode antagonism are reviewed briefly, and results of recent field experiments to test whether trematode antagonism can be used for control of trematode infections are discussed. These results show that it is easy to control trematode infections by dispersing large numbers of eggs of a dominant parasite in relatively small bodies of water. Such release may produce a multiple effect: (1) intertrematode antagonism; (2) considerable decrease in the snail population due to higher mortality and parasitic castration of infected snails; and (3) a microsporidan epidemic caused by a hyperparasite, affecting rediae and sporocysts and leading to suppression of cercarial production. Any one or a combination of the three effects may achieve control of the target species. The usefulness of this biological control method depends largely on whether dominant parasites can be found that fulfill the requirements for large-scale application and on whether other factors interfere with antagonism or prevent snails from becoming infected with the dominant speices. A good dominant trematode should be strongly antagonistic to the target species, have a wide geographic distribution, develop rapidly in the snail and cause complete castration, be easily maintained in the laboratory, and preferably be capable of infecting the snail hosts in their various habitats. Development of efficient methods of dispersing eggs and more field experiments are necessary to determine the advantages and limitations of this method.  相似文献   

13.
This work describes associations of Thiara (Tarebia) granifera, its larval trematode community, and Chaetogaster limnaei limnaei at a freshwater reservoir in Jamaica. Larvae of 2 trematodes were present, i.e., a notocotylid (15.3%) and Philophthalmus sp. (1.3%), in 3,575 T. granifera examined. The prevalence of both infections increased with snail shell length (H = 56, P < 0.01, H = 23.1, P < 0.01, respectively). Only 3.0% (n = 595) of infected snails possessed reproductive stages, compared with 90.3% (n = 2,980) of uninfected snails (χ(2) = 2,059.8, df = 1, P < 0.001); both trematodes negatively impacted snail reproduction. Chaetogaster l. limnaei occurred within the mantle cavity of T. granifera with a prevalence of 2.3% (n = 3,575); intensity ranged from 1 to 6 annelids. Notocotylid larvae occurred in 32.5% (n = 83) of snails also harboring C. l. limnaei, compared with 14.9% (n = 3,492) of snails lacking the annelid (χ(2) = 18.127; P < 0.001). Chaetogaster l. limnaei appears not to influence the recruitment of egg-transmitted, notocotylid infections to snails. Ingestion of emergent cercariae by the annelid was observed; this may impact transmission of the parasite. The article presents the first report of a notocotylid and C. l. limnaei in T. granifera, and of Philophthalmus sp. in Jamaica.  相似文献   

14.
A survey of cercariae and metacercariae (Trematoda, Digenea) from the great pond snail (Lymnaea stagnalis) in Central Europe (Austria, Czech Republic, South-East Germany, Poland and Slovak Republic) is presented, based on a study of 3,628 snails examined from 1998 to 2005. A total of 953 (26.3%) L. stagnalis were infected with 24 trematode species comprising 19 species of cercariae and 11 species of metacercariae (six species occurred both as cercarie and metacercarie) of eight families. The dominant cercariae were those of Opisthioglyphe ranae (159 hosts infected), Plagiorchis elegans (141) (both family Plagiorchiidae) and Echinoparyphium aconiatum (153) (Echinostomatidae); 14 double infections were found. The most frequent metacercariae were those of Neoglyphe locellus (71) (Omphalometridae), E. aconiatum (66), Echinostoma sp. (59) and Moliniella anceps (48) (Echinostomatidae). In the previous studies carried out in Central Europe, a very similar spectrum of nine trematode families of 22 cercariae determined to species level and 43 types of cercariae reported under generic or provisional names, which can be in many cases conspecific with the previous taxa, were found. A simple key to identification of cercariae and metacercariae, together with their illustrations, is provided.  相似文献   

15.
Factors that influenced the infracommunity structure of trematodes parasitizing the pulmonate snail Helisoma anceps were studied over a 15-mo period; the guild included 8 species of parasites. Infracommunities were depauperate, with double patent infections observed in only 7 of 1,485 infected snails; a total of 4,899 was examined. Halipegus occidualis-Haematoloechus longiplexus was the most common dual infection. Both species share the same definitive host and, in both cases, eggs are the infective stage for the snail. Switches and losses of infections in individual snails were observed, suggesting the occurrence of dynamic interactions within the guild. A dominance hierarchy was constructed based on field observations and experimental infections. Echinostomatids were dominant; species without rediae in their life cycles were subordinates. Halipegus occidualis (which has rediae) was intermediate in dominance. Spatial and temporal heterogeneity in the distribution and abundance of trematode infective stages indicate that not all the snails have the same probability of becoming infected. Habitat structure, behavior of the definitive host, the nature of the infective stages, and snail population dynamics (mortality, recruitment, and size structure) generated spatial and temporal heterogeneity in this system. As a consequence, predictions of the probabilities of interspecific interactions based on an analysis of observed and expected frequencies of multiple infections could be inappropriate unless the potential sources of heterogeneity are considered.  相似文献   

16.
A total of 984 snails, comprising nine species, were collected from six areas in the Kafue wetlands between August and October 2003 to assess larval trematode infections. Of these, 135 (13.7%) were positive. Most trematode infections were recorded from Lymnaea natalensis (42.8%), which harboured four of the five morphologically different cercariae found. No trematodes were recovered from Bellamya capillata, Biomphalaria pfeifferi, Melanoides tuberculata, Physa acuta and Cleopatra nswendweensis. One snail (0.2%) of 416 Bulinus snails shed brevifurcate-apharyngeate distome cercariae while three (0.7%) shed amphistomes. Gymnocephalous and longifurcate-pharyngeate distome were the commonest types of cercariae recorded while xiphidiocercaria was the least common. The highest prevalence rates of F. gigantica (68.8%) and amphistomes (50.0%) in cattle (n = 101) were in Chiyasa while those in Kaleya had the lowest (9.1 and 18.2%, respectively). In most habitats, infections were recorded in both cattle and snails. Critical determinants of infection may have been the distance of settlements and/or cattle kraals, the number of animals in nearby homesteads and the presence of susceptible host snails. This study suggests that fascioliasis and amphistomiasis could be major constraints of cattle production in the Kafue wetlands because favourable factors were available to introduce and maintain the infections. It further provides a starting point for some comprehensive studies on snail-related aspects of transmission and snail host ecology in Zambia.  相似文献   

17.
Several studies have suggested that the fitness of a parasite can be directly impacted by the quality of its host. In such cases, selective pressures could act to funnel parasites towards the highest-quality hosts in a population. The results of this study demonstrate that snail host quality is strongly correlated with spatial patterning in trematode infections and that habitat type is the underlying driver for both of these variables. Two trematodes (Himasthla quissetensis and Zoogonus rubellus) with very different life cycles assume the same spatial infection pattern in populations of the first intermediate host (Ilyanassa obsoleta) in coastal marsh habitats. Infected snails are disproportionately recovered from intertidal panne habitats, which offer more hospitable environs for snails than do adjacent habitats (intertidal creeks, coastal flats, and subtidal creeks), in terms of protection from turbulence and wave action, as well as the availability of food stuffs. Snails in intertidal panne habitats are of higher quality when assessed in terms of average size-specific mass, growth rate, and fecundity. In mark-recapture experiments, snails frequently dispersed into intertidal pannes but were never observed leaving them. In addition, field experiments demonstrate that snails confined to intertidal panne habitats are disproportionately infected by both trematode species, relative to conspecifics confined to adjacent habitats. Laboratory experiments show that infected snails suffer significant energetic losses and consume more than uninfected conspecifics, suggesting that infected snails in intertidal pannes may survive better than in adjacent habitats. We speculate that 1 possible mechanism for the observed patterns is that the life cycles of both trematode species allows them to contact the highest-quality snails in this marsh ecosystem.  相似文献   

18.
This study addresses the infrapopulation sizes of 2 larval trematode species Himasthla quissetensis and Zoogonus rubellus as they co-occur within their estuarine snail host Ilyanassa obsoleta. Rediae of H. quissetensis and sporocysts of Z rubellus were counted in snails singly infected with each parasite and in snails infected with both. Comparisons of the counts indicate that infrapopulations of H. quissetensis were unaffected by co-occurrence with Z rubellus. However, Z. rubellus infrapopulations were reduced when co-occurring with H. quissetensis. It is proposed that this situation does not result from an interspecific interaction between parasite species. Although this double infection is relatively frequent in certain snail populations, it is contended that these trematode species do not co-occur often enough to evolve responses to one another. However, the host environment must be encountered in each life cycle, and both trematode species must be adapted to use it. On this basis, whatever happens when these 2 species occupy the same host is based on adaptations of the parasites to the host. It is proposed that these parasites are adapted to self-limit their infrapopulations in the snail host. They can, thus, preserve and use the host for many years and thereby enhance total cercarial transmission (fitness). Infrapopulation sizes would be determined by host resource levels, which, among other factors, would be influenced by the presence of multiple parasite species. In single infections, by far the most common situation, host resource levels would be set by the nutritional status or age (size) of the host (or both). The reduced infrapopulation sizes of Z rubellus on co-occurrence suggest that this trematode is more sensitive to host resource levels than is H. quissetensis.  相似文献   

19.

Background

Fish-borne zoonotic trematodes (FZT) are a food safety and health concern in Vietnam. Humans and other final hosts acquire these parasites from eating raw or under-cooked fish with FZT metacercariae. Fish raised in ponds are exposed to cercariae shed by snail hosts that are common in fish farm ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission to juvenile fish raised in carp nurseries.

Methodology/Principal Findings

Snail population density and prevalence of trematode (Heterophyidae) infections were determined in 48 carp nurseries producing Rohu juveniles, (Labeo rohita) in the Red River Delta area. Fish samples were examined at 3, 6 and 9 weeks after the juvenile fish were introduced into the ponds. There was a significant positive correlation between prevalence of FZT metacercariae in juvenile fish and density of infected snails. Thus, the odds of infection in juvenile fish were 4.36 and 11.32 times higher for ponds with medium and high density of snails, respectively, compared to ponds where no infected snails were found. Further, the intensity of fish FZT infections increased with the density of infected snails. Interestingly, however, some ponds with no or few infected snails were collected also had high prevalence and intensity of FZT in juvenile fish. This may be due to immigration of cercariae into the pond from external water sources.

Conclusions/Significance

The total number and density of potential host snails and density of host snails infected with heterophyid trematodes in the aquaculture pond is a useful predictor for infections in juvenile fish, although infection levels in juvenile fish can occur despite low density or absence infected snails. This suggests that intervention programs to control FZT infection of fish should include not only intra-pond snail control, but also include water sources of allochthonous cercariae, i.e. canals supplying water to ponds as well as snail habitats outside the pond such as rice fields and surrounding ponds.  相似文献   

20.
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号