首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Abstract. A certain percentage of congenitally anophthalmic mouse embryos have the ability to generate small lens vesicles that have previously been shown to produce alpha crystallin at 13-day gestation. Further immunohistological analysis of 13- and 15-day-gestation anophthalmia embryos indicates that beta crystallin is present in those 13-day embryos which have lens vesicles with lens-fiber formation. Also, 15-day embryos with lenses demonstrating fiber elongation can produce both beta and gamma crystallins. The conclusion is drawn that the genetic potential to produce at least three characteristic biochemical markers of normal lens differentiation is present in the anophthalmia mutant. The spatial distribution patterns of the crystallins in normal and anophthalmia embryos were similar. However, there appeared to be a transposition in the temporal appearance of beta and gamma crystallins in the anophthalmia mutant. Optic cups and associated lenses in 15-day anophthalmia specimens were much smaller than those in controls. The optic and lens rudiments in these anophthalmia embryos were fairly proportional in size, which indicates that some degree of allometric growth compensation had occurred during the course of development. This ability for differential growth compensation in the mouse eye appears to be restricted to the predifferentiative stages of eye formation.  相似文献   

5.
6.
The time and place of the accumulation of alpha A-, beta B1- and gamma-crystallin RNA in the developing rat lens have been studied by in situ hybridization. alpha A- and gamma-crystallin RNA were first detected in the lens vesicle, while beta B1-crystallin RNA could be seen only after elongation of the primary fiber cells. Both beta B1- and gamma-crystallin RNA were confined to the fiber cells of fetal lenses, while alpha A-crystallin mRNA could also be detected in the epithelial cells. A quantification of the hybridization pattern obtained in the differentiation zone of the newborn rat lens showed that alpha A-crystallin RNA is concentrated in the cortical zone. alpha B-crystallin mRNA has the same distribution pattern. beta B1-crystallin RNA was relatively poorly detectable by in situ hybridization in both fetal and newborn rat lenses. The grain densities obtained with this probe increased from the periphery of the lens toward the interior, indicating that beta B1-crystallin RNA accumulated during differentiation of the secondary fiber cells. A similar accumulation pattern was obtained for gamma-crystallin mRNA, but, unexpectedly, this RNA could also be detected in the elongating epithelial cells. Our results show that gamma-crystallin RNA starts to accumulate as soon as visible elongation of epithelial cells occurs, during differentiation of the primary as well as the secondary fiber cells.  相似文献   

7.
The levels of delta- and beta-crystallin mRNAs were examined by cDNA hybridization in the embryonic and posthatched chicken eye lens. Four different cloned beta-crystallin cDNAs were used, allowing discrimination among different members of the beta-crystallin family. Each crystallin mRNA displayed a characteristic temporal and spatial pattern in the developing lens. delta-Crystallin mRNA accumulated rapidly during early embryonic development; by contrast, the beta-crystallin mRNAs began to accumulate rapidly near the end of embryogenesis. Both delta- and beta-crystallin mRNAs increased in the lens for the first month after hatching and began to decrease 3 months after hatching. The levels of the delta- and the different beta-crystallin mRNAs were also differentially regulated in cultured embryonic lens epithelia. The most fiber cell specific crystallin gene product in the differentiating lens was the beta 35 mRNA. These experiments provide a quantitative basis for exploring the differential expression of the delta- and beta-crystallin gene families in the chicken lens.  相似文献   

8.
9.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

10.
Lens proteins and lens gross morphology were examined during tadpole and adult development of the bullfrog, Rana catesbeiana. Significant increases in the lens physical parameters of diameter, wet weight, dry weight (94–97% protein), and percent water were observed to accompany both natural and thyroxine-induced metamorphosis. These increases in lens parameters were not accompanied by growth of tadpoles during metamorphic change. Lens proteins were isolated from whole lenses and also from specified layers within whole lenses by a new fractionation method. Electrophoretic examination of whole lenses showed that the lens proteins did not change rapidly, one for another, prior to or during metamorphosis. However, changes became apparent during post metamorphic development. These changes included an increase in the relative concentration and mobility of alpha crystallin, a decrease in the relative concentration of gamma crystallin and an increase in the relative concentration of beta crystallin. Examination of specified layers within tadpole and frog lenses demonstrated that changes in the patterns of lens protein synthesis and modification may occur during development. Rapid and reproducible methods for quantitating changes in lens gross morphology and lens proteins, and for fractionating both tadpole and frog lenses into a number of definable layers were devised in the course of this study.  相似文献   

11.
Delta crystallin was isolated from 10–13 day chick embryo lens fiber cells. The lens fiber cell extract was isoelectrically precipitated at pH 5.1 to remove alpha and beta crystallins. Further purification by filtration through Sephadex G-150 and then acrylamide gel electrophoresis yielded a single, homogeneous preparation of delta crystallin, as characterized by gel electrophoresis. This purified delta crystallin was injected into rabbits to produce a potent antiserum to chick lens delta crystallin. The purified delta crystallin was iodinated with 125Iodine, using the chloramine-T procedure. A radioimmunoassay for delta crystallin was then developed, using the principles of competitive protein binding analysis. The radioimmunoassay developed here had a minimum sensitivity of 50 nanograms, and effectively ranged to 1000 nanograms.
Developing lens rudiments from early chick embryos, beginning from 24 hr incubation up to 72 hr were examined at 6 hr intervals. All determinations from 24 hr through the 48 hr sample showed less than 10 nanograms per 100 lens rudiments. This was below the effective minimum detection limits of the assay. The first accumulation of delta crystallin was detected in the 54 hr sample, and increased thereafter.  相似文献   

12.
The high molecular weight aggregates (HMWA) obtained from normal and cataractous human lens nuclei have been resolved by SDS-polyacrylamide gel electrophoresis, and the alpha crystallin band has been probed with antisera made against the whole alpha crystallin molecule and with antisera made against synthetic peptides of alpha crystallin (alpha A2 147-161 and alpha A2 163-173). Quantitation of these antisera binding demonstrated that the anti-alpha A2 163-173 serum and the anti-alpha whole sera bound equally well to the alpha crystallin band from the HMWA fraction from normal and cataractous lenses. In contrast, the anti-alpha A2 147-161 serum bound little, if at all, to alpha crystallin from normal lenses, while it bound well to alpha crystallin from cataractous lenses. These results demonstrate a covalent alteration in the alpha crystallin molecule, and suggest a possible location of a covalent change that may occur during the cataractogenic process in the aged human lens.  相似文献   

13.
Explanted rat lens epithelial cells differentiate synchronously in vitro to lens fiber cells in the presence of basic fibroblast growth factor (bFGF). We have monitored the expression of the three rat crystallin gene families, the alpha-, beta-, and gamma-crystallin genes, during this process. The expression of these gene families is sequentially activated, first the alpha-crystallin genes at Day 1, then the beta-crystallin genes at Day 3, and finally the gamma-crystallin genes at Day 8. The steady state levels of alpha- and beta-crystallin mRNA are not affected by incubation with actinomycin D, suggesting that these mRNAs are stable. Nevertheless, all crystallin mRNAs disappear from the differentiated explants between Days 10 and 11, a process signaled by bFGF. At this time a novel abundant mRNA appears. Cloning and sequencing showed that this mRNA encoded aldose reductase. Our results suggest a novel model for the regulation of crystallin synthesis during lens cell differentiation: a gene pulse delivers a certain amount of stable mRNA, this mRNA is removed at a later stage of differentiation by a stage-specific breakdown mechanism. Each of these regulatory steps requires a signal from bFGF.  相似文献   

14.
Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.  相似文献   

15.
16.
The developing chicken embryo lens provides a unique model for examining the relationship between alpha6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that alpha6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell-cell interfaces of the differentiating cortical lens fiber cells. Both alpha6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of alpha6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens alpha6 integrin was uniquely localized along the cell-cell borders of the differentiating fiber cells, similar to beta1. alpha6beta4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of alpha6A and alpha6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that alpha6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with alpha6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that alpha6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of alpha6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the alpha6A isoform remained high until the cells became terminally differentiated. alpha6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of alpha6B relative to alpha6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

17.
18.
19.
Hereditary childhood cataracts can arise from single-point mutations in genes encoding crystallins, the major protein components of the lens. The cataracts are most commonly inherited by an autosomal dominant mechanism. The nature of the changes in the lens resulting from these point mutations in crystallin genes has not been fully characterised. While aggregation and light scattering associated with expression of the mutant crystallin protein may be an end point, it is also necessary to determine the progression of changes induced at the level of development and differentiation. A key finding in recent work is that cell death or cytotoxicity is associated with mutations in alpha A-crystallin. The variable morphology or localisation of the cataract in different pedigrees, even with the identical crystallin gene mutation, has led to the idea that other environmental or genetic factors interact to give the final lens phenotype. The study of mechanisms of formation of hereditary cataracts may lead to a greater understanding of the mechanisms that lead to age-related cataracts, a very common cause of blindness in the ageing population.  相似文献   

20.
Ubiquitin-protein conjugates and alpha B crystallin are detected immunohistochemically in cells undergoing extensive morphological reorganisation in early chicken embryos. Cytoplasmic ubiquitinated proteins and alpha B crystallin are coordinately found in cells of the lens, notochord and myotome. The antigens appear in the myotome cells precisely at the point at which the cells begin to migrate from the dorsomedial lip of the dermamyotome. The findings indicate that ubiquitin and alpha B crystallin may have a coordinate role in the extensive architectural remodeling which occurs in these developing tissues in the early chick embryo. Some form of functional association between protein ubiquitination and alpha B crystallin in cells may explain why alpha B crystallin is found with ubiquitin-protein deposits in some neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号