首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biceps, semimembranosus, biceps femoris, and soleus muscles of female Rockland Wistar mice infected with either 1,000 Trichinella spiralis or 1,000 Trichinella pseudospiralis larvae were removed on days 12, 14, 16, and 18 post-infection (PI), sectioned and stained histochemically for their myosin ATPase activity. Light microscopic examination of the sections revealed that larvae of T. spiralis invade only the slow twitch muscle fibers, and those of T. pseudospiralis invade both the fast twitch and the slow twitch fibers. In sections obtained from mice infected with either parasite and killed on days 16 and 18 PI, identification of the majority of the infected fibers as fast twitch or slow twitch was not possible due to pathological modification of infected fibers.  相似文献   

2.
The intracellular Na ion activity (aiNa) and the contractile tension (T) of sheep cardiac Purkinje fibers were simultaneously measured employing recessed-tip Na+-selective glass microelectrodes and a mechano-electric transducer. The aiNa of 6.4 +/- 1.6 mM (mean +/- SD, n = 56) was obtained in fibers perfused with normal Tyrode's solution. The changes in aiNa and T were measured during and after the exposure of fibers to a cardiac glycoside, dihydro-ouabain (DHO) in concentrations between 5 X 10(-8) M and 10(-5) M. The exposure time to DHO was 15 min. Both aiNa and T did not change in fibers exposed to 5 X 10(-8) M DHO, and the threshold concentration for the effect of DHO appeared to be around 10(-7) M. In DHO concentrations greater than the threshold, the increases in aiNa and T strongly correlated during the onset of DHO effects. The recoveries of aiNa and T were variable and slow, being dependent on the DHO concentration. In those fibers which recovered from the effects of DHO, the time-course of aiNa recovery was similar to that of T recovery. In fibers exposed to DHO of 5 X 10(-6) M or greater, the apparent toxic effects were observed in both action potential and contraction after an initial increase in T. The fibers manifesting the apparent toxic effects has a aiNa of approximately 30 mM or greater. The results of this study indicate that the increase in aiNa is associated with the positive inotropic action of the cardiac glycoside.  相似文献   

3.
The effects of Na pump activity on the slow inward current, Isi, magnitude and twitch tension were investigated in sheep cardiac Purkinje fibres. A two-microelectrode voltage-clamp method was used, tension being measured simultaneously. Na pump activity was lowered either by reducing the extracellular K concentration, [K]O, or by applying the cardiotonic steroid strophanthidin. Reduction of [K]O from 4 to 0 mM leads to time-dependent increases in Isi magnitude and twitch tension. The increases of Isi and tension could be reversed by adding Tl, Rb, Cs or NH4 ions to the K-free superfusate. The actions of these ions are attributed to the known ability of these cations to activate the external site of the Na pump. This conclusion is supported by the observation that such activator cations do not reverse the increases in Isi and tension produced by strophanthidin. We conclude that the effects of low [K]O on Isi are mediated by Na pump inhibition. Similarly the Na pump inhibition produced by strophanthidin increases Isi and tension, although, in this case, other mechanisms may also contribute. Measurements of the activity of the electrogenic Na pump show that elevated intracellular Na ion concentration secondary to Na pump inhibition and not the instantaneous Na pump turnover rate mediates the increase in Isi magnitude.  相似文献   

4.
System L is a major nutrient transport system responsible for the Na(+)-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]L-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]L-leucine by T24 cells is Na(+)-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]L-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]L-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]L-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]L-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.  相似文献   

5.
Charge movement by the Na/K pump in Xenopus oocytes   总被引:4,自引:1,他引:3  
Pre-steady-state transient currents (1986. Nakao, M., and D. C. Gadsby. Nature [Lond.]. 323:628-630) mediated by the Na/K pump were measured under conditions for Na/Na exchange (K-free solution) in voltage- clamped Xenopus oocytes. Signal-averaged (eight times) current records obtained in response to voltage clamp steps over the range -160 to +60 mV after the addition of 100 microM dihydroouabain (DHO) or removal of external Na (control) were subtracted from test records obtained before the solution change. A slow component of DHO- or Na-sensitive difference current was consistently observed and its properties were analyzed. The quantity of charge moved was well described as a Boltzmann function of membrane potential with an apparent valence of 1.0. The relaxation rate of the current was fit by the sum of an exponentially voltage-dependent reverse rate coefficient plus a voltage- independent forward rate constant. The quantity of charge moved at the on and off of each voltage pulse was approximately equal except at extreme negative values of membrane potential where the on charge tended to be less than the off. The midpoint voltage of the charge distribution function (Vq) was shifted by -24.8 +/- 1.7 mV by changing the external [Na] in the test condition from 90 to 45 mM and by +14.7 +/- 1.7 mV by changing the test [Na] from 90 to 120 mM. A pseudo three- state model of charge translocation is discussed in which Na+ is bound and occluded at the internal face of the enzyme and is released into an external-facing high field access channel (ion well). The model predicts a shift of the charge distribution function to more hyperpolarized potentials as extracellular [Na] is lowered; however, several features of the data are not predicted by the model.  相似文献   

6.
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

7.
Intracellular Na ion activity (aiNa) and twitch tension (T) of constantly driven (1 Hz) canine cardiac Purkinje fibers were measured simultaneously and continuously with neutral carrier Na+-selective microelectrodes and a force transducer. The aiNa of 8.9 +/- 1.4 mM (mean +/- SD, n = 52) was obtained in the driven fibers perfused with normal Tyrode solution. Temporary interruption of stimulation showed that aiNa of the driven fibers was approximately 1.5 mM greater than that of quiescent fibers. The constantly driven fibers were exposed to strophanthidin of 10(-8), 5 X 10(-8), 10(-7), 5 X 10(-7), and 10(-6) M for 5 min. No detectable changes in aiNa and T were observed in the fibers exposed to 10(-8) M strophanthidin, and the threshold concentration of the strophanthidin effect appeared to be approximately 5 X 10(-8) M. With concentrations greater than 5 X 10(-8) M, strophanthidin produced dose-dependent increases in aiNa and T. An increase in aiNa always accompanied an increase in T and after strophanthidin exposure both aiNa and T recovered completely. During onset and recovery periods of the strophanthidin effect the time course of change in aiNa was similar to that of change in T. A plot of T vs. aiNa during the onset and recovery periods showed a linear relationship between T and aiNa. These results indicate strongly that the positive inotropic effect of strophanthidin is closely associated with the increase in aiNa. Raising [K+]0 from 5.4 to 10.8 mM produced decreases in aiNa and T, and restoration of [K+]0 resulted in recoveries of aiNa and T. During the changes of [K+]0 the time course of change in aiNa was similar to that of the change in T. A steady-state sarcoplasmic Ca ion activity (aiCa) of 112 +/- 31 nM (mean +/- SD, n = 17) was obtained in the driven fibers with the use of neutral carrier Ca2+-selective microelectrodes. Temporary interruption produced 10-30% decreases in aiCa. No detectable changes in aiCa were observed in the fibers exposed to strophanthidin of 10(-7) M or less; 5 X 10(-7) and 10(-6) M strophanthidin produced 1.3-1.6 and 2-3-fold increases in aiCa, respectively. This result is consistent with the hypothesis that an increase in aiNa produces an increase in aiCa, which enhances Ca accumulation in the intracellular stores.  相似文献   

8.
Twitch and slow muscle fibers, identified morphologically in the garter snake, have been examined in the electron microscope. The transverse tubular system and the sarcoplasmic reticulum are separate entities distinct from each other. In twitch fibers, the tubular system and the dilated sacs of the sarcoplasmic reticulum form triads at the level of junction of A and I bands. In the slow fibers, the sarcoplasmic reticulum is severely depleted in amount and the transverse tubular system is completely absent. The junctional folds of the postsynaptic membrane of the muscle fiber under an "en grappe" ending of a slow fiber are not so frequent or regular in occurrence or so wide or so long as under the "en plaque" ending of a twitch fiber. Some physiological implications of these differences in fine structure of twitch and slow fibers are discussed. The absence of the transverse tubular system and reduction in amount of sarcoplasmic reticulum, along with the consequent disposition of the fibrils, the occurrence of multiple nerve terminals, and the degree of complexity of the post junctional folds of the sarcolemma appear to be the morphological basis for the physiological reaction of slow muscle fibers.  相似文献   

9.
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

10.
To determine whether Na/Ca exchange is altered in primary hypertension, Na-dependent changes in intracellular Ca, ([Ca]i), were measured in isolated perfused hearts from Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Intracellular Na, (Nai, mEq/kg dry wt), and [Ca]i were measured by NMR spectroscopy. Control [Ca]i was less in WKY than SHR (176 +/- 18 vs 253 +/- 21 nmol/l; mean +/- S.E., P < 0.05), whereas Nai was not significantly different. One explanation for this is that net Na/Ca exchange flux is decreased in SHR. If this hypothesis is correct, the rate of Ca uptake in SHR should be less than WKY when Na/Ca exchange is reversed by decreasing the transmembrane Na gradient. The Na gradient was reduced by decreasing extracellular Na, ([Na]o) and/or by increasing [Na]i. To increase [Na]i, Na uptake was stimulated by acidification while Na extrusion by Na/K ATPase was inhibited by K-free perfusion. Seventeen minutes after acidification, Nai had increased but was not significantly different in SHR and WKY (18.0 +/- 2.3 to 57.4 +/- 7.6 vs 20.3 +/- 0.6 to 66.5 +/- 4.8 mEq/kg dry wt, respectively). Yet [Ca]i was greater in WKY than SHR (1768 +/- 142 vs 1201 +/- 90 nmol/l; P < 0.05). [Ca]i was also measured after decreasing [Na]o from 141 to 30 mmol/l. Fifteen minutes after reducing [Na]o, [Ca]i was greater in WKY than SHR (833 +/- 119 vs 425 +/- 94 nmol/l; P < 0.05). Thus for both protocols, decreasing the transmembrane Na gradient led to increased [Ca]i in both SHR and WKY, but less increase in SHR. The results are consistent with the hypothesis that Na/Ca exchange activity is less in SHR than WKY myocardium.  相似文献   

11.
Masculinization of the larynx in Xenopus laevis frogs is essential for the performance of male courtship song. During postmetamorphic (PM) development, the initially female-like phenotype of laryngeal muscle (slow and fast twitch fibers) is converted to the masculine form (entirely fast twitch) under the influence of androgenic steroids. To explore the molecular basis of androgen-directed masculinization, we have isolated cDNA clones encoding portions of a new Xenopus myosin heavy chain (MHC) gene. We have detected expression of this gene only in laryngeal muscle and specifically in males. All adult male laryngeal muscle fibers express the laryngeal myosin (LM). Adult female laryngeal muscle expresses LM only in some fibers. Expression of LM during PM development was examined using Northern blots and in situ hybridization. Males express higher levels of LM than females throughout PM development and attain adult levels by PM3. In females, LM expression peaks transiently at PM2. Treatment of juvenile female frogs with the androgen dihydrotestosterone masculinizes LM expression. Thus, LM appears to be a male-specific, testosterone-regulated MHC isoform in Xenopus laevis. The LM gene will permit analysis of androgen-directed sexual differentiation in this highly sexually dimorphic tissue.  相似文献   

12.
In this study, the mechanisms of polyamine spermidine (Spd) uptake were investigated in Xenopus laevis oocytes. Spd uptake followed a sigmoidal kinetics with [S]90/[S]10 = 3 microM and Hill interaction coefficient (n) = 2. The order of magnitude of uptake and efflux was similar (t1/2 = 45 min). The equilibrium potential for Spd, calculated by Nenrst equation, was 90.78 mV. Free energy change for the uptake (delta G) was found to be 2.31 Kcal/mole of Spd. During efflux, Spd was not converted into putrescine or spermine. It seems that there are two types of Spd uptake pathways: Na(+)-dependent and Na(+)-independent since replacement of Na+ from incubation medium did not completely abolish the Spd uptake. The Na(+)-dependent component of Spd uptake was shared neither by system A nor by system ASC amino acids.  相似文献   

13.
An Na+-stimulated Mg2+-transport system in human red blood cells   总被引:5,自引:0,他引:5  
The initial rate of net Mg2+ efflux was measured in human red blood cells by atomic absorption. In fresh erythrocytes incubated in Na+,K+-Ringer's medium this rate was 7.3 +/- 2.8 mumol/l cells per h (mean +/- S.D. of 14 subjects) with an energy of activation of 13 200 cal/mol. Cells with total Mg2+ contents ([ Mg]i) ranging from 1.8 to 24 mmol/l cells were prepared by using a modified p-chloromercuribenzenesulphonate method. Mg2+ efflux was strongly stimulated by increases in [Mg]i and in external Na+ concentrations ([ Na]o). A kinetic analysis of Mg2+ efflux as a function of [Mg]i and [Na]o revealed the existence of two components: an Na+-stimulated Mg2+ efflux, which exhibited a Michaelian-like dependence of free internal Mg2+ content (apparent dissociation constant = 2.6 +/- 1.4 mmol/l cells; mean +/- S.D. of six subjects) and on external Na+ concentration (apparent dissociation constant = 20.5 +/- 1.9 mM; mean +/- S.D. of four subjects) and a variable maximal rate ranging from 35 to 370 mumol/l cells per h, and an Na+-independent Mg2+ efflux, which showed a linear dependence on internal Mg2+ content with a rate constant of (6.6 +/- 0.7) X 10(-3) h-1. Fluxes catalyzed by the Na+-stimulated Mg2+ carrier were partially dependent on the ATP content of the cells and completely inhibited by quinidine (IC50 = 50 microM) and by Mn2+ (IC50 = 0.5-1.0 mM).  相似文献   

14.
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.  相似文献   

15.
The purpose of this investigation was to study the effects of a 17-day spaceflight on the contractile properties of individual fast- and slow-twitch fibers isolated from biopsies of the fast-twitch gastrocnemius muscle of four male astronauts. Single chemically skinned fibers were studied during maximal Ca2+-activated contractions with fiber myosin heavy chain (MHC) isoform expression subsequently determined by SDS gel electrophoresis. Spaceflight had no significant effect on the mean diameter or specific force of single fibers expressing type I, IIa, or IIa/IIx MHC, although a small reduction in average absolute force (P(o)) was observed for the type I fibers (0.68 +/- 0.02 vs. 0.64 +/- 0.02 mN, P < 0.05). Subject-by-flight interactions indicated significant intersubject variation in response to the flight, as postflight fiber diameter and P(o) where significantly reduced for the type I and IIa fibers obtained from one astronaut and for the type IIa fibers from another astronaut. Average unloaded shortening velocity [V(o), in fiber lengths (FL)/s] was greater after the flight for both type I (0.60 +/- 0.03 vs. 0.76 +/- 0.02 FL/s) and IIa fibers (2.33 +/- 0.25 vs. 3.10 +/- 0.16 FL/s). Postflight peak power of the type I and IIa fibers was significantly reduced only for the astronaut experiencing the greatest fiber atrophy and loss of P(o). These results demonstrate that 1) slow and fast gastrocnemius fibers show little atrophy and loss of P(o) but increased V(o) after a typical 17-day spaceflight, 2) there is, however, considerable intersubject variation in these responses, possibly due to intersubject differences in in-flight physical activity, and 3) in these four astronauts, fiber atrophy and reductions in P(o) were less for slow and fast fibers obtained from the phasic fast-twitch gastrocnemius muscle compared with slow and fast fibers obtained from the slow antigravity soleus [J. J. Widrick, S. K. Knuth, K. M. Norenberg, J. G. Romatowski, J. L. W. Bain, D. A. Riley, M. Karhanek, S. W. Trappe, T. A. Trappe, D. L. Costill, and R. H. Fitts. J Physiol (Lond) 516: 915-930, 1999].  相似文献   

16.
Experiments were carried out to test the hypothesis that mM concentrations of fura-2, a high-affinity Ca2+ buffer, inhibit the release of Ca2+ from the sarcoplasmic reticulum (SR) of skeletal muscle fibers. Intact twitch fibers from frog muscle, stretched to a long sarcomere length and pressure-injected with fura-2, were activated by an action potential. Fura-2's absorbance and fluorescence signals were measured at different distances from the site of fura-2 injection; thus, the myoplasmic free Ca2+ transient (delta [Ca2+]) and the amount and rate of SR Ca2+ release could be estimated at different myoplasmic concentrations of fura-2 ([fura-2T]). At [fura-2T] = 2-3 mM, the amplitude and half-width of delta [Ca2+] were reduced to approximately 25% of the values measured at [fura-2T] less than 0.15 mM, whereas the amount and rate of SR Ca2+ release were enhanced by approximately 50% (n = 5; 16 degrees C). Similar results were observed in experiments carried out at low temperature (n = 2; 8.5-10.5 degrees C). The finding of an enhanced rate of Ca2+ release at 2-3 mM [fura-2T] is opposite to that reported by Jacquemond et al. (Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Biophys. J. 60:867-873) from analogous experiments carried out on cut fibers. In two experiments involving the injection of larger amounts of fura-2, reductions in SR Ca2+ release were observed; however, we were unable to decide whether these reductions were due to [fura-2T] or to some nonspecific effect of the injection itself. These experiments do, however, suggest that if large [fura-2T] inhibits SR Ca2+ release in intact fibers, [fura-2T] must exceed 6 mM to produce an effect comparable to that reported by Jacquemond et al. in cut fibers. Our clear experimental result that 2-3 mM [fura-2T] enhances SR Ca2+ release supports the proposal that delta [Ca2+] triggered by an action potential normally feeds back to inhibit further release of Ca2+ from the SR (Baylor, S.M., and S. Hollingworth. 1988. J. Physiol. [Lond.]. 403:151-192). Our results provide no support for the hypothesis that Ca(2+)-induced Ca2+ release plays a significant role in excitation-contraction coupling in amphibian skeletal muscle.  相似文献   

17.
Membrane current following prolonged periods of rapid stimulation was examined in short (less than 1.5 mm) canine cardiac Purkinje fibers of radius less than 0.15 mm. The Purkinje fibers were repetitively stimulated by delivering trains of depolarizing voltage clamp pulses at rapid frequencies. The slowly decaying outward current following repetitive stimulation ("post-drive" current) is eliminated by the addition of 10(-5) M dihydro-ouabain. The post-drive current is attributed to enhanced Na/K exchange caused by Na loading during the overdrive. Depolarizing voltage clamp pulses initiated from negative (- 80 mV) or depolarized (-50 mV) holding potentials can give rise to post- drive current because of activation of tetrodotoxin-sensitive or D600- sensitive channels. The magnitude of the post-drive current depends on the frequency of voltage clamp pulses, the duration of each pulse, and the duration of the repetitive stimulation. The time constant of decay of the post-drive current depends on extracellular [K] in accordance with Michaelis-Menten kinetics. The Km is 1.2 mM bulk [K], [K]B. The mean time constant in 4 mM [K]B is 83 s. Epinephrine (10(-5) M) decreases the time constant by 20%. The time constant is increased by lowering [Ca]o between 4 and 1 mM. Lowering [Ca]o further, to 0.1 mM, eliminates post-drive current following repetitive stimulation initiated from depolarized potentials. The latter result suggests that slow inward Ca2+ current may increase [Na]i via Na/Ca exchange.  相似文献   

18.
The cardiac glycoside ouabain inhibits Na,K-ATPase by binding to the alpha subunit. In a highly ouabain resistant clone from the MDCK cell line, we have found two alleles of the alpha subunit in which the cysteine, present in the wild-type first transmembrane segment, is replaced by a tyrosine (Y) or a phenylalanine (F). We have studied the kinetics of ouabain inhibition by measuring the current generated by the Na,K-pump in Xenopus oocytes injected with wild-type and mutated alpha 1 and wild-type beta 1 subunit cRNAs. When these mutations, alpha 1C113Y and alpha 1C113F [according to the published sequence [Verrey et al. (1989) Am. J. Physiol., 256, F1034] were introduced in the alpha 1 subunit of the Na,K-ATPase from Xenopus laevis, the inhibition constant (Ki) of ouabain increased greater than 1000-fold compared with wild-type. A more conservative mutation, serine alpha 1C113S did not change the Ki. We observed that the decreased affinity for ouabain was mainly due to a faster dissociation, but probably also to a slower association. Thus we propose that an amino acid residue of the first transmembrane segment located deep in the plasma membrane participates in the structure and the function of the ouabain binding site.  相似文献   

19.
Action potentials and developed contractions of externally unloaded single ventricular myocytes isolated from adult rat and guinea pig hearts were recorded by means of an optical system for recording contractile activity during regular stimulation by microelectrodes. Under control conditions, the shortenings (twitches) in the rat myocytes were fully inhibited by 0.1 microM ryanodine, but they were rather insensitive to the Ca2+ blocker 0.2-0.5 microM nifedipine. In contrast, the contractions of the isolated guinea pig ventricular myocytes were greatly suppressed by 0.2-0.5 microM nifedipine (to less than 30%), while they were only slightly reduced by 1 microM ryanodine. When the Na+ gradient was decreased by reducing [Na]o or by elevating [Na]i in the presence of veratridine, the twitch contractions were increased in both species. The effect of reduced [Na]o on twitch contractions was not affected by ryanodine in either type of myocytes, while nifedipine still fully abolished the twitches in the guinea pig cells, indicating a strong dependence of guinea pig contractions on Ca2+ influx. On the other hand, the effect of a reduced Na gradient by veratridine was more complex; the usual twitch (phasic component) was increased and it was followed by a second (tonic) component which relaxed only after the repolarization of the action potential. While the phasic component was decreased by nifedipine and ryanodine in the usual way (as in the controls), the sustained contractions (lasting up to several seconds) were ryanodine and nifedipine insensitive. Furthermore, the cardiomyocytes of both species exposed to strontium in place of external calcium still exhibited all the effects observed when reducing the Na+ gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The structure of the triadic junction in frog slow fibers has been studied and compared with that of twitch fibers. The junctional gap is wider (by approximately 13%) in slow fibers. The junctional feet have the same size and disposition as in twitch fibers, although the size and shape of the junctional areas are different. It is concluded that the role of triads in slow fibers is the same as in twitch fibers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号