首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative and dynamic analysis of metabolites and signalling molecules is limited by technical challenges in obtaining temporally resolved information at the cellular and compartmental level. Real-time information on signalling and metabolite levels with subcellular granularity can be obtained with the help of genetically encoded FRET (F?rster resonance energy transfer) nanosensors. FRET nanosensors represent powerful tools for gene discovery, and analysis of regulatory networks, for example by screening mutants. However, RNA silencing has impaired our ability to express FRET nanosensors functionally in Arabidopsis plants. This drawback was overcome here by expressing the nanosensors in RNA silencing mutants. However, the use of silencing mutants requires the generation of homozygous lines deficient in RNA silencing as well as the mutation of interest and co-expression of the nanosensor. Here it is shown that dynamic changes in cytosolic glucose levels can readily be quantified in wild-type Arabidopsis plants at early stages of development (7-15 d) before silencing had a major effect on fluorescence intensity. A detailed protocol for screening 10-20 mutant seedlings per day is provided. The detailed imaging protocol provided here is suitable for analysing sugar flux in young wild-type plants as well as mutants affected in sugar signalling, metabolism, or transport using a wide spectrum of FRET nanosensors.  相似文献   

2.
Glucose homeostasis is a function of glucose supply, transport across the plasma membrane, and metabolism. To monitor glucose dynamics in individual cells, a glucose nanosensor was developed by flanking the Escherichia coli periplasmic glucose/galactose-binding protein with two different green fluorescent protein variants. Upon binding of substrate the FLIPglu-170n sensor showed a concentration-dependent decrease in fluorescence resonance energy transfer between the attached chromophores with a binding affinity for glucose of 170 nm. Fluorescence resonance energy transfer measurements with different sugars indicated a broad selectivity for monosaccharides. An affinity mutant with a Kd of approximately 600 microM was generated, which showed higher substrate specificity, and thus allowed specific monitoring of reversible glucose dynamics in COS-7 cells in the physiological range. At external glucose concentrations between 0.5 and 10 mM, reflecting typical blood levels, free cytosolic glucose concentrations remained at approximately 50% of external levels. The removal of glucose lead to reduced glucose levels in the cell, demonstrating reversibility and visualizing homeostasis. Glucose levels dropped even in the presence of the transport inhibitor cytochalasin B, indicating rapid metabolism. Consistently, the addition of 2-deoxyglucose, which is not recognized by the sensor, affects glucose uptake and metabolism rates. Within the physiological range, glucose utilization, i.e. hexokinase activity, was not limiting. Furthermore, the results show that in COS-7 cells, cytosolic glucose concentrations can vary over at least two orders of magnitude. The glucose nanosensor provides a novel tool with numerous scientific, medical, and environmental applications.  相似文献   

3.
Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose.  相似文献   

4.
By 2010, it is expected that biochemical functions will be assigned to many of the products of the approximately 30,000 Arabidopsis genes. Moreover, systematic analysis of mutants will provide insight into the biological function of the gene products. Metabolomic technologies complement these approaches by testing for changes in cellular ion and metabolite patterns, providing essential information for the construction of cellular and whole-plant models of metabolism. However, one important set of information that is especially relevant for multicellular organisms is still lacking, that is, knowledge of the cellular and subcellular variation in metabolite levels. The recent development of protein-based nanosensors for metabolites will help to close this gap by providing a set of tools that can be used to determine cytosolic and subcellular metabolite levels in real time using fluorescence-based microscopy. A major challenge for the future is the application of these nanosensors to quantify metabolite levels in plant cells and tissues.  相似文献   

5.
The network structure and the metabolic fluxes in central carbon metabolism were characterized in aerobically grown cells of Saccharomyces cerevisiae. The cells were grown under both high and low glucose concentrations, i.e., either in a chemostat at steady state with a specific growth rate of 0.1 h(-1) or in a batch culture with a specific growth rate of 0.37 h(-1). Experiments were carried out using [1-(13)C]glucose as the limiting substrate, and the resulting summed fractional labelings of intracellular metabolites were measured by gas chromatography coupled to mass spectrometry. The data were used as inputs to a flux estimation routine that involved appropriate mathematical modelling of the central carbon metabolism of S. cerevisiae. The results showed that the analysis is very robust, and it was possible to quantify the fluxes in the central carbon metabolism under both growth conditions. In the batch culture, 16.2 of every 100 molecules of glucose consumed by the cells entered the pentose-phosphate pathway, whereas the same relative flux was 44.2 per 100 molecules in the chemostat. The tricarboxylic acid cycle does not operate as a cycle in batch-growing cells, in contrast to the chemostat condition. Quantitative evidence was also found for threonine aldolase and malic enzyme activities, in accordance with published data. Disruption of the MIG1 gene did not cause changes in the metabolic network structure or in the flux pattern.  相似文献   

6.
To better understand the relation between cell calcium and exocytotic secretion, a quantitative dependence of adrenal catecholamine secretion on cytosolic free calcium has been determined for isolated, intact, bovine chromaffin cells, using the fluorescent probe Quin-2. The cells required a threshold of 250-300 nM cytosolic calcium to be reached before detectable secretion occurred and half-maximal secretion occurred near 2 microM cytosolic calcium. Nicotinic receptors mediated an increase of cytosolic calcium from resting levels near 100 nM to levels in the 1-10 microM range within seconds followed by a decay back to resting levels over several minutes. Muscarinic receptors mediated a smaller rise in cytosolic free calcium from 100 to about 200 nM, within seconds. The nicotinic response required extracellular calcium, while the muscarinic response was largely independent of extracellular calcium, suggesting the latter mobilizes intracellular calcium. The acetylcholine-evoked rise in cytosolic calcium decayed by at least two kinetically distinct processes with half-time constants: t1 = 0.6 min and t2 = 3.2 min. Extracellular Na+ deprivation caused a more prolonged elevation of the acetylcholine-evoked calcium transient, suggesting a possible role of Na+/Ca2+ exchange and/or other Na+ -dependent processes in lowering cytosolic calcium following stimulation. The possible perturbing effects of Quin-2 on resting and stimulated cytosolic calcium levels and on secretion were examined and a novel use of Quin-2 to measure membrane calcium flux was demonstrated.  相似文献   

7.
The cytosolic Ca2+ activity of insulin-releasing clonal cells (RINm5F) was studied with the intracellular fluorescent indicator quin-2. When the extracellular Ca2+ concentration was 1 mM, the basal cytosolic Ca2+ activity was 101 +/- 5 nM. Depolarization with 25 mM K+ increased this Ca2+ activity to at least 318 nM, an effect completely reversed by the voltage-dependent channel blocker D-600. In the presence of K+ alone these channels appeared to have a half-life of 6.7 +/- 0.8 min. In contrast to the action of K+, exposure of the RINm5F cells to 4 mM glucose resulted in a reduction of the cytosolic Ca2+ activity. This effect was observed during K+ depolarization but was more pronounced under basal conditions when it amounted to 20%. The data provide the first direct evidence that glucose can decrease the cytosolic Ca2+ activity in beta-cells. Unlike the case in normal beta-cells the glucose effect on the voltage-dependent Ca2+ channels in the RINm5F cells is apparently not sufficient to overcome the intracellular buffering of Ca2+. A defective depolarization is therefore a probable cause of the failing insulin secretion of RINm5F cells exposed to glucose.  相似文献   

8.
The cytosolic Ca2+ activity of mouse pancreatic beta-cells was studied with the intracellular fluorescent indicator quin2 . When the extracellular Ca2+ concentration was 1.20 mM, the basal cytosolic Ca2+ activity was 162 +/- 9 nM. Stimulation with 20 mM glucose increased this Ca2+ activity by 40%. In the presence of only 0.20 mM Ca2+ or after the addition of the voltage-dependent Ca2+ -channel blocker D-600, glucose had an opposite and more prompt effect in reducing cytosolic Ca2+ by about 15%. It is concluded that an early result of glucose exposure is a lowering of the cytosolic Ca2+ activity and that this effect tends to be masked by a subsequent increase of the Ca2+ activity due to influx of Ca2+ through the voltage-dependent Ca2+ channels.  相似文献   

9.
Glucose release from hepatocytes is important for maintenance of blood glucose levels. Glucose-6-phosphate phosphatase, catalyzing the final metabolic step of gluconeogenesis, faces the endoplasmic reticulum (ER) lumen. Thus, glucose produced in the ER has to be either exported from the ER into the cytosol before release into circulation or exported directly by a vesicular pathway. To measure ER transport of glucose, fluorescence resonance energy transfer-based nanosensors were targeted to the cytosol or the ER lumen of HepG2 cells. During perfusion with 5 mM glucose, cytosolic levels were maintained at approximately 80% of the external supply, indicating that plasma membrane transport exceeded the rate of glucose phosphorylation. Glucose levels and kinetics inside the ER were indistinguishable from cytosolic levels, suggesting rapid bidirectional glucose transport across the ER membrane. A dynamic model incorporating rapid bidirectional ER transport yields a very good fit with the observed kinetics. Plasma membrane and ER membrane glucose transport differed regarding sensitivity to cytochalasin B and showed different relative kinetics for galactose uptake and release, suggesting catalysis by distinct activities at the two membranes. The presence of a high-capacity glucose transport system on the ER membrane is consistent with the hypothesis that glucose export from hepatocytes occurs via the cytosol by a yet-to-be-identified set of proteins.  相似文献   

10.
Genetically encoded FRET glucose nanosensors have proven to be useful for imaging glucose flux in HepG2 cells. However, the dynamic range of the original sensor was limited and thus it did not appear optimal for high throughput screening of siRNA populations for identifying proteins involved in regulation of sugar flux. Here we describe a hybrid approach that combines linker-shortening with fluorophore-insertion to decrease the degrees of freedom for fluorophore positioning leading to improved nanosensor dynamics. We were able to develop a novel highly sensitive FRET nanosensor that shows a 10-fold higher ratio change and dynamic range (0.05-11 mM) in vivo, permitting analyses in the physiologically relevant range. As a proof of concept that this sensor can be used to screen for proteins playing a role in sugar flux and its control, we used siRNA inhibition of GLUT family members and show that GLUT1 is the major glucose transporter in HepG2 cells and that GLUT9 contributes as well, however to a lower extent. GFP fusions suggest that GLUT1 and 9 are preferentially localized to the plasma membrane and thus can account for the transport activity. The improved sensitivity of the novel glucose nanosensor increases the reliability of in vivo glucose flux analyses, and provides a new means for the screening of siRNA collections as well as drugs using high-content screens.  相似文献   

11.
How do intracellular fluxes respond to dynamically increasing glucose limitation when the physiology changes from strong overflow metabolism near to exclusively maintenance metabolism? Here we investigate this question in a typical industrial, glucose‐limited fed‐batch cultivation with a riboflavin overproducing Bacillus subtilis strain. To resolve dynamic flux changes, a novel approach to 13C flux analysis was developed that is based on recording 13C labeling patterns in free intracellular amino acids. Fluxes are then estimated with stationary flux ratio and iterative isotopomer balancing methods, for which a decomposition of the process into quasi‐steady states and estimation of isotopic steady state 13C labeling patterns was necessary. By this approach, we achieve a temporal resolution of 30–60 min that allows us to resolve the slow metabolic transients that typically occur in such cultivations. In the late process phase we found, most prominently, almost exclusive respiratory metabolism, significantly increased pentose phosphate pathway contribution and a strongly decreased futile cycle through the PEP carboxykinase. As a consequence, higher catabolic NADPH formation occurred than was necessary to satisfy the anabolic demands, suggesting a transhydrogenase‐like mechanism to close the balance of reducing equivalents. Biotechnol. Bioeng. 2010. 105: 795–804. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Today''s major excitement in biology centers on signaling: How can a cell or organism measure the myriad of environmental cues, integrate it, and acclimate to the new conditions? Hormonal signals and second messengers are in the focus of most of these studies, e.g., regulation of glucose transporter GLUT4 cycling by insulin, or regulation of plant growth by auxin or brassinosteroids.13 In comparison, we generally assume that we know almost everything about basic metabolism since it has been studied for many decades; for example we know since the early 80s that allosteric regulation by fructose-2,6-bisphophate plays an important role in regulating glycolysis in plants and animals.4 This may be the reason why studies of metabolism appear to be a bit out of fashion. But if we look to other organisms such as E. coli or yeast, we rapidly realize that metabolism is controlled by complex interconnected signaling networks, and that we understand little of these signaling networks in humans and plants.5,6 As it turns out, the cell registers many metabolites, and flux through the pathways is regulated using complex signaling networks that involve calcium as well as hormones.Key Words: flux, fluxome, glucose, glutamate, phosphate, sucrose, fluorescence resonance energy transfer, biosensorOne of the reasons for the fable for hormones lies in the simple fact that it is easier to observe macroscopic changes, such as changes in the architecture of a plant than to determine metabolite levels, but also here new tools are urgently needed that allow quantification of these small molecules. Visualization of starch levels provided a significant advance, and in combination with mutant screens allowed to identify fundamental components of starch metabolism.79 The biggest advance for the signaling field was the development of advanced chemical and genetically encoded calcium dyes.1012 No such dyes are available for hormones or metabolites, as soon as we try to determine levels of metabolites (or signaling molecules), we run into the issues of compartmentation and cellular differences in tissues. Today, the same enzymatic assays used decades ago are still widely used to determine metabolite levels. Although significant advances in chromatography and mass spectrometry based metabolite analysis have moved the study of metabolism to ‘omics’ era, compartmentalization of metabolism still presents a major challenge. Especially the large vacuoles of plant cells are a major obstacle, since even fractionation studies suffer from contamination. Moreover, with the current set of tools it is not possible to determine the dynamic changes in metabolite levels in different subcellular compartments in real time in vivo. Radiotracers have helped a lot to identify and quantify intermediates and to assemble pathways, originally using pulse labeling followed by paper chromatography. Today 13C-labeling is used together with mass spectrometry to obtain insights into metabolic flux control.13 This tool set for the first time enabled the comparison of mutants and study regulatory networks involved in sugar signaling. While significant, advances in radiotracer experiments do not provide cellular or subcellular information and only limited temporal resolution, they do provide efficient means for studying metabolite fluxes through complex and/or not well-defined pathways. Thus there is a clear need for metabolite specific dyes that can be targeted to subcellular compartments and that would enable flux measurements in response to environmental cues helping to push metabolic research back into the focus of signaling-related biology.In 2002, we developed the first prototype “metabolic dye” FRET sensor for maltose.14,15 A similar glucose sensor was recently employed for measuring tracer-independent transport of glucose across the ER membrane of liver cells.16 After resolving some issues such as low signal-to-noise and gene silencing in plants, we are now able to compare glucose levels between cells in an intact root in real time.17 The parallel development of sucrose and phosphate sensors complements the set of tools, in future experiments providing a comparison of sucrose, phosphate and glucose fluxes in intact tissues with both temporal (below seconds) and spatial resolution (cellular and subcellular).18,19The first experiments already led to a big surprise: glucose supplied to the root is rapidly taken up and is rapidly metabolized.17 Roots expressing the highest affinity sensor FLIPglu170n responded to glucose perfusion suggesting that the steady state glucose level in the root is less than 100 nM, the estimated detection limit for this sensor in these first experiments. The first experiments were limited by the mixing kinetics in the bath used for perfusion, while improvement of the chamber now allow for faster for glucose exchange. We estimate that glucose levels fall from a steady state level of approximately 5 mM in the cytosol when perfused with 5 mM glucose to below 100 nM in about three minutes. For the sensor with an affinity of 600 µM the rate of glucose accumulation, which is composed of the various rates that affect the steady state in the cytosol such as metabolism, compartmentation and transport across the plasma membrane, is in the range of 527 ± 77 µM glucose/min and that for glucose removal is 317 ± 37 (Fig. 1; Chaudhuri B, Frommer WB, unpublished). Questions that arise are: Which transport systems drive uptake? How much does the vacuole contribute to the observed flux and steady state levels? Is the capacity of hexokinase at levels below its Km still sufficient to phosphorylate glucose efficient enough to pull glucose below 100 nM or does hexokinase have different properties in vivo compared to what we know from the purified enzyme? Are there different transporters and enzymes contributing to flux in the low (1–10 mM) and the ultrahigh affinity (low µM) phases? Are there spatial differences in the root? Why do roots take up glucose so efficiently in the first place? The combination of the sensors with information from the expression-LEDs from Birnbaum and Benfey20 and specific knock-out mutants should help answering some of these questions.Open in a separate windowFigure 1Quantitative analysis of glucose flux from an Arabidopsis root expressing FLIPglu-600µΔ13, a FRET sensor for glucose with an affinity of 600 µM. The root of a 10 day-old seedling was placed into a perfusion chamber and perfused with hydroponic medium with or without 5 mM glucose. eCFP was excited and emission was recorded for eCFP and eYFP every 10 seconds (essentially as decsribed in ref. 17). The emission intensities for a region-of-interest were averaged and the emission ratio was determined at the two wavelengths for each image of a time series and plotted on the Y-axis against time on the X-axis. Addition of glucose is indicated.Another big surprise is the dramatic gradient of glucose across the plasma membrane, which has important implications for our understanding of transport processes across the plasma membrane as well as the intracellular membranes.17 Information about the gradients is relevant in the context of apo- and symplasmic unloading routes in roots21 and the contribution of proton-coupled transporters in cellular export.22 It will thus be interesting to follow the extracellular levels using surface-anchored sensors. Now that besides high sensitivity glucose FLIPs17 we also generated nanosensors for sucrose19 and phosphate,18 complementing the similar tool sets for calcium23 and pH,24 it is possible to compare multiple parameters and to follow flux at different levels and to calibrate against other influences.The improvements of the signal-to-noise ratio of the FRET-based metabolite sensors25 makes the FLIPs a standard tool for every lab interested in measuring ion-, sugar- or amino acid flux in living cells. Since the nanosensors are genetically encoded, they can be used to characterize intracellular fluxes16,26 in any organism for which transformation protocols have been established. The existing sets of sensors are simple to use, constructs are available through Addgene and Arabidopsis lines from the Arabidopsis Stock Center. Detailed instructions for imaging can be found at: http://carnegiedpb.stanford.edu/research/frommer/research_frommer_protocols.php. These tools will hopefully become a standard system not only for physiological analyses, but in addition provide a new way for high throughput fluxomics studies.  相似文献   

13.
14.
Administration of supplemental glucose and/or insulin is postulated to improve the outcome from myocardial ischemia by increasing the heart's relative utilization of glucose as an energy substrate. To examine the degree to which circulating glucose and insulin levels actually influence myocardial substrate preference in vivo, we infused conscious, chronically catheterized rats with D-[1-(13)C]glucose and compared steady-state (13)C enrichment of plasma glucose with that of myocardial glycolytic ([3-(13)C]alanine) and oxidative ([4-(13)C]glutamate) intermediary metabolites. In fasting rats, [3-(13)C]alanine-to-[1-(13)C]glucose and [4-(13)C]glutamate-to-[3-(13)C]alanine ratios averaged 0.16 +/- 0.12 and 0.14 +/- 0.03, respectively, indicating that circulating glucose contributed 32% of myocardial glycolytic flux, whereas subsequent flux through pyruvate dehydrogenase contributed 14% of total tricarboxylic acid (TCA) cycle activity. Raising plasma glucose to 11 mmol/l, or insulin to 500 pmol/l, increased these contributions equivalently. At supraphysiological (>6,500 pmol/l) insulin levels, the plasma glucose contribution to glycolysis increased further, and addition of hyperglycemia made it the sole glycolytic substrate, yet [4-(13)C]glutamate-to-[3-(13)C]alanine ratios remained /=40% of myocardial TCA cycle flux.  相似文献   

15.
16.
17.
18.
19.
In Saccharomyces cerevisiae, oxidation of pyruvate to acetyl coenzyme A can occur via two routes. In pyruvate decarboxylase-negative (Pdc-) mutants, the pyruvate dehydrogenase complex is the sole functional link between glycolysis and the tricarboxylic acid (TCA) cycle. Such mutants therefore provide a useful experimental system with which to study regulation of the pyruvate dehydrogenase complex. In this study, a possible in vivo inactivation of the pyruvate dehydrogenase complex was investigated. When respiring, carbon-limited chemostat cultures of wild-type S. cerevisiae were pulsed with excess glucose, an immediate onset of respiro-fermentative metabolism occurred, accompanied by a strong increase of the glycolytic flux. When the same experiment was performed with an isogenic Pdc- mutant, only a small increase of the glycolytic flux was observed and pyruvate was the only major metabolite excreted. This finding supports the hypothesis that reoxidation of cytosolic NADH via pyruvate decarboxylase and alcohol dehydrogenase is a prerequisite for high glycolytic fluxes in S. cerevisiae. In Pdc- cultures, the specific rate of oxygen consumption increased by ca. 40% after a glucose pulse. Calculations showed that pyruvate excretion by the mutant was not due to a decrease of the pyruvate flux into the TCA cycle. We therefore conclude that rapid inactivation of the pyruvate dehydrogenase complex (e.g., by phosphorylation of its E1 alpha subunit, a mechanism demonstrated in many higher organisms) is not a relevant mechanism in the response of respiring S. cerevisiae cells to excess glucose. Consistently, pyruvate dehydrogenase activities in cell extracts did not exhibit a strong decrease after a glucose pulse.  相似文献   

20.
Evidence is submitted that glucose is found in a chemically unaltered form in cells ofSaccharomyces cerevisiae RXII incubated with glucose, if the culture is grown under aerobic conditions at 30°C and is in the logarithmic phase of growth at the moment of harvesting. Under these conditions, the course of formation of a glucose steady state can be studied under aerobic and anaerobic incubation conditions. The steady state glucose concentration in the cells is the linear function of the glucose concentration in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号