首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dinuclear complex [Cu2(dpbp)2(NCMe)4][BF4]2 (1) has been prepared by treating [Cu(NCMe)4][BF4] with 4,4′-bis(diphenylphosphino)biphenylene (abbreviated as dpbp). Reactions of 1 with 2,2′-bipyridine and 1,1′-bis(diphenylphosphino)ferrocene (abbreviated as dppf) afford [Cu2(dpbp)2(2,2′-bipy)2][BF4]2 (2) and [Cu2(dpbp)(dppf)2][BF4]2 (3), respectively. In contrast, compound 1 reacts with tetra(2-pyridyl)ethyl-1,4-diaminobutane (abbreviated as tpyda) to produce the polymeric complex {[Cu2(dpbp)(tpyda)][BF4]2}n (4). Compounds 1-4 are photoluminescent with the emission band (λmax) in the range 510-554 nm. The crystal structures of 1 and 4 have been determined by an X-ray diffraction study.  相似文献   

2.
The complexes [Cu(PCHO)2(NCMe)][BF4] (1) and [Cu(PCHO)3][BF4] (2) have been prepared by treating [Cu(NCMe)4][BF4] with two and three equivalents of Ph2P(o-C6H4)C(O)H (abbreviated as PCHO) at room temperature, respectively. The reaction of 1 and (Ph2PC5H4)2Fe (abbreviated as DPPF) affords [Cu(PCHO)(DPPF)][BF4] (3). The molecular structures of 1-3 have been determined by an X-ray diffraction study. The aldehyde groups in 1 are pendant, while one of the formyl groups in 2 is weakly coordinated to the copper ion through the oxygen atom. On the other hand, the copper atom in 3 is strongly chelated by both DPPF and PCHO ligands.  相似文献   

3.
One-dimensional {[Cu2(dppa)2(4,4′-bipy)(CH3CN)2](BF4)2 · 2CH3CN}n (1), two-dimensional {[Cu2(dppa)(4,4′-bipy)2(CH3CN)2](BF4)2 · 4CH2Cl2 · 4H2O}n (2) and three-dimensional {[Cu2(dppa)(4,4′-bipy)3](BF4)2 · 2CH2Cl2 · 3CH3CN · 3H2O}n (3) polymeric complexes have been prepared by self-assembly of [Cu(MeCN)4]BF4, Ph2PCCPPh2 (dppa) and 4,4′-bipyridine (4,4′-bipy) in a 2:2:1, 1:1:1 and 2:2:3 molar ratio, respectively. The structures of 1-3, determined by an X-ray diffraction study, reveal a linear spring-like architecture for 1, a planar honeycomb grid for 2 and an interlocked adamantoid network for 3.  相似文献   

4.
Interaction of Ag(CF3CO2) with bis(diphenylphosphino)amide (dppa) in THF gave a tetranuclear Ag4-coplanar silver(I) complex [Ag4(μ-dppa)24-O2PPh2)2(μ-CF3CO2)2] (1). The trinuclear trigonal-bipyramid copper(I) complex [Cu33-Cl)2(μ-dppa)3][CuCl2] (2) was obtained from the reaction of [CuCl] powder with bis(diphenylphosphino)amide (dppa) in THF. Treatment of 2 with (Me3Si)2Se in THF afforded a μ8-selenide-centered octanuclear copper(I) complex [Cu88-Se)(μ4-Se)(μ4-SeH)3(μ-dppa)4][(Ph2PO)2N] (3). The structures of 1-3 were determined by single-crystal X-ray diffraction analyses. Complex 1 comprises a rectangular Ag4 array with each edge bridged with a pair of μ-dppa, μ4-O2PPh2 and μ-CF3CO2 ligands that are approximately perpendicular to each other. Complex 2 contains a trigonal-bipyramid [Cu33-Cl)2]+ core surrounded by three μ-dppa ligands. The cationic complex in 3 consists of four [Cu2(μ-dppa)] fragments side-capped by one μ4-Se and three μ4-SeH ligands and center-connected by a μ8-Se atom.  相似文献   

5.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

6.
Five copper(I) complexes having general formula [Cu2(μ-X)22-P,P-B-dppf)2] (X = Cl(1), Br(2), I(3), CN(4), and SCN(5)) were prepared starting with CuX and B-dppf in 1:1 molar ratio in DCM-MeOH (50:50 V/V) at room temperature. The complexes have been characterized by elemental analyses, IR, 1H NMR, 31P NMR and electronic spectral studies. Molecular structures for 1, 2 and 4 were determined crystallographically. Complexes 1, 2 and 4 exist as centrosymmetric dimers in which the two copper atoms are bonded to two bridging B-dppf ligands and two bridging (pseudo-)halide groups in a μ1 bonding mode to generate nearly planar Cu2(μ1-X)2 framework. Both bridging B-dppf ligands are arranged in antiperiplanar staggered conformation in 1 and 2 (mean value 56.40-56.76°), and twisted from the eclipsed conformation (mean value 78.19°) in 4. The Φ angle value in 4 is relatively larger as compared to 1 and 2. This seems to indicate that the molecular core [Cu2(μ1-X)2] in 4 is a sterically demanding system that forces the B-dppf ligand to adopt a relatively strained conformation in comparison to less strained system in 1 and 2. All the complexes exhibit moderately strong luminescence properties in the solution state at ambient temperature.  相似文献   

7.
Dinuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) or bis(diphenylphosphino)methane (dppm) and 2,2′-bipyridine or 2-[N-(2-pyridyl)methyl]amino-5,7-dimethyl-1,8-naphthyridine (L), [Cu2(bpy)2(dppm)2](BF4)2 (1), [Cu2(bpy)2(dcpm)](BF4)2 (2), [Cu2(L)(dppm)](BF4)2 (3) and [Cu2(L)(dcpm)](BF4)2 (4) were prepared, and their structures were determined by X-ray crystal analysis. Two-, three-, and four-coordinate copper(I) centers are found in these complexes. Compounds 3 and 4 show close CuI?CuI separations of 2.664(3) and 2.674(1) Å, respectively, whereas an intramolecular copper-copper distance of 3.038 Å is found in 2 having only dcpm as an additional bridge. Powdered samples of 1, 3, and 4 display intense and long-lived phosphorescence with λmax at 533, 575, and 585 nm at room temperature, respectively. In the solid state, 2 exhibits only a weak emission at 555 nm. The time-resolved absorption and emission spectra of these complexes were investigated. The difference in the emission properties among complexes 1-4 suggests that both CuI?CuI distances and coordination environment of the copper(I) centers affect the excited-state properties.  相似文献   

8.
New copper(I) complexes containing the water soluble N-methyl-1,3,5-triaza-7-phosphaadamantane (mPTA) phosphine have been synthesized by ligand-exchange reactions starting from [Cu(CH3CN)4][BF4] or [Cu(CH3CN)4][PF6] precursors and (mPTA)X (X = CF3SO3, I). Depending on the ligand counter ion, the hydrophilic [Cu(mPTA)4][(CF3SO3)4(BF4)] 3a and [Cu(mPTA)4][(CF3SO3)4(PF6)] 3c complexes or the iodine-coordinated [Cu(mPTA)3I]I34 species were obtained respectively and fully characterized by spectroscopic methods. Single crystal structural characterization was undertaken for [Cu(mPTA)3I]I3·H2O, 4·H2O, and [Cu(mPTA)4][(CF3SO3)2(BF4)3] ·0.25H2O, 3b·0.25H2O, the latter obtained by crystallization of [Cu(mPTA)4][(CF3SO3)4(BF4)] 3a. The cytotoxicity of analogous tetrahedral homoleptic Cu(I) derivatives [Cu(PTA)4](BF4) 1, [Cu(PTAH)4][Cl4(BF4)] 2, [Cu(mPTA)4][(CF3SO3)4(BF4)] 3a and [Cu(mPTA)4][(CF3SO3)4(PF6)] 3c was evaluated against a panel of several human tumor cell lines. All the complexes showed in vitro antitumor activity comparable to that of the reference metallodrug cisplatin. Tests performed on cisplatin sensitive and resistant cell lines showed that against human ovarian 2008/C13* cell line pair, the resistance factor of copper derivatives was roughly 7-fold lower than that of cisplatin, whereas against human cervix cancer A431/A431-Pt cell line pair it was about 2.5-fold lower. These results, confirming the circumvention of cisplatin resistance, support the hypothesis that phosphine copper(I) complexes follow different cytotoxic mechanisms than do platinum drugs.  相似文献   

9.
Reaction of cis-[Mo2(OAc)2(CH3CN)6][BF4]2 with NP-Et,Me (2-ethyl-3-methyl-1,8-naphthyridine) in acetonitrile provides trans-[Mo2(NP-Et,Me)2(OAc)2(CH3CN)][BF4]2 (1). Partial protonation of 1 by HBF4·Et2O in acetonitrile leads to trans-[Mo2(NP-Et,Me)2(OAc)(CH3CN)3][BF4]3 (2). In both compounds, NP-R ligands are arranged in a head-to-head (HH) fashion leaving one of the axial sites vacant. Substitution of acetonitriles by NP-Me (3-methyl-1,8-naphthyridine) in trans-[Mo2(NP-tz)2(OAc)(CH3CN)2][BF4]3 provides trans-[Mo2(NP-tz)2(OAc)(NP-Me)][BF4]3 (3) with retention of configuration. Fully solvated dimolybdenum(II) compound reacts with NP-NH2 to provide [Mo2(NP-NH2)2(NP-NH)(CH3CN)2][BF4]3 (4) in which the NP-NH2 ligands are trans and arranged in a HH fashion. The deprotonated ligand (NP-NH) binds the dimetal unit utilizing naphthyridine nitrogen and amido nitrogen. Treatment of [Mo2(NP-tz)2(CH3CN)4][CF3SO3]4 with bpym (2,2-bipyrimidine) followed by crystallization in air provided an oxo complex [Mo2(NP-tz)2(μ2-O)2(bpym)2][CF3SO3]4 (5). Compounds 1-5 have been characterized by a variety of spectroscopic techniques and by X-ray crystallography. The reactivity pattern is rationalized based on ligand labilities and thermodynamic stabilities.  相似文献   

10.
The reaction of 2-(methylthioethanol) with 1,8-dichloroanthraquinone and 1,5-dichloroanthraquinone in THF with base produces 1,8-bis(2-methylthioethoxy)anthraquinone (1) and 1,5-bis(2-methylthioethoxy)anthraquinone (2), respectively. Silver(I) complexes of 1 and 2 have been synthesized after combination with [Ag(CH3CN)4]BF4 in 1:1 M ratio to yield, [(1,8-bis(2-methylthioethoxy)anthraquinone)Ag]BF4, (3) and [(1,5-bis(2-methylthioethoxy)anthraquinone)Ag·CH3CN]BF4, (4). X-ray crystal structures of the free ligand (1) and the Ag(I) complexes (3 and 4) are reported. The intraannular carbonyl group forms a coordinate-covalent bond with Ag(I) and, in the solid state, both silver(I) complexes are found as coordination polymers.  相似文献   

11.
Diphosphine-bridged dimers of oxo-centered triruthenium-acetate cluster units, i.e., [{Ru3O(OAc)6(py)2}2(dppan)](PF6)2 (2) and [{Ru3O(OAc)6(py)2}2(dppf)](PF6)2 (3) were prepared by reaction of 2.3 equivalent [Ru3O(OAc)6(py)2(CH3OH)](PF6) with 9,10-bis(diphenylphosphino)anthracene (dppan) or 1,1′-bis(diphenylphosphino)ferrocene (dppf), respectively. Apparent redox wave splitting is observed in complex 2, revealing the presence of electronic communication between two triruthenium units mediated through bridging dppan. The complexes were characterized by elemental analysis, IR, UV-Vis, 31P NMR, and ES-MS spectroscopies, and cyclic and differential-pulse voltammetry. The crystal structure of complex 3 was determined by X-ray crystallography.  相似文献   

12.
Six new complexes, [Cu4I4(PPh2Cy)4]·2H2O (1), [CuI(PPhCy2)2] (2), [CuCl(PPhCy2)2] (3), and [CuBr(PPh3)3]·CH3CN (4), [Ag(PPhCy2)2(NO3)] (5), [Ag(PCy3)(NO3)]2 (6) [where Ph = phenyl, Cy = cyclohexyl], have been synthesized and structurally characterized by X-ray diffraction, IR absorption spectra and NMR spectroscopic studies (except complex 4). The X-ray diffraction analysis of complex (1), pseudo polymorph of complex [Cu4I4(PPh2Cy)4], reveals a stella quadrangula structure. The four corners of the cube are occupied by copper(I) atoms and four I atoms are present at the alternative corners of the cube, further more the copper(I) atoms are coordinated to a monodentate tertiary phosphine. Complexes (2) and (3) are isostructural with trigonal planar geometry around the copper(I) atom. The crystal structure of complex (4) is a pseudo polymorph of complex [CuBr(PPh3)3] and the geometrical environment around the copper(I) centre is distorted tetrahedral. In the AgI complexes (5) and (6), the central metal atoms have pseudo tetrahedral and trigonal planar geometry, respectively. Spectroscopic and microanalysis results are consistent with the single crystal X-ray diffraction studies.  相似文献   

13.
Phosphinoquinoxalines were prepared by treatment of 2,3-dichloroquinoxaline (3) with phosphorus nucleophiles. The Arbuzov reaction of 3 with PPh(O-i-Pr)2 gave a mixture of diastereomers of 2,3-(PPh(O)(O-i-Pr))2quinoxaline (6); the crystal structure of rac-6 was determined, but attempts at reduction to yield bis(phenylphosphino)quinoxaline 7 resulted in P-C cleavage and formation of phenylphosphine. The bis(secondary phosphine) 7 could be generated from 3 and LiPHPh(BH3), but was not isolated in pure form. Copper-catalyzed coupling of PHPh2 with 3 gave 2,3-bis(diphenylphosphino)quinoxaline (4, dppQx), whose coordination chemistry was investigated, with comparison to data for the analogous 1,2-bis(diphenylphosphino)benzene (dppBz) complexes. Reaction of dppQx with [Cu(NCMe)4][PF6] gave [Cu(dppQx)2][PF6] (8); CuCl yielded [Cu(dppQx)Cl]2 (9). Reaction of [Cu(NCMe)4][PF6] with one equiv of DPEphos, followed by one equiv of dppQx, gave [Cu(dppQx)(DPEphos)][PF6] (10). Ligand 4 and copper complexes 8 and 9 were crystallographically characterized. The UV-Vis spectra of dppQx and its copper complexes were red-shifted from those of the dppBz analogs; in contrast to results for the dppBz complexes, those of dppQx were not luminescent in solution.  相似文献   

14.
The reaction of MCl2 · 2H2O (M = Cu, Zn) with 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) (referred hereafter as L) in 2:1 molar ratio in acetonitrile at room temperature afforded binuclear complexes [M23-L)Cl4] [Cu (1), Zn (2)] where the ligand is bis-tridentate manner. The complexes have been characterized by elemental analyses, FAB-MS, IR, EPR, NMR and electronic spectral studies. Solid state structures of both the [Cu23-L)Cl4] · 5H2O (1), [Zn23-L)Cl4] · H2O (2) have been determined by single crystal X-ray analyses. A well-resolved uudd cyclic water tetramer and water monomer were reported in the crystal host of [Cu23-L)Cl4] · 5H2O (1) and [Zn23-L)Cl4] · H2O (2) showing the contribution of the water cluster to the stability of the crystal host 1 and 2.  相似文献   

15.
The reaction of [Cu(CH3CN)4]BF4, 6-(4-methoxyl)phenyl-2,2′-bipyridine (designated as MeO-CNN), and/or tricyclohexylphosphine (PCy3) and diimine ligands derived from 4,4′-bipyridine gave four mono- and binuclear copper(I) complexes, [Cu(MeO-CNN)2]BF4 (1), [Cu2(MeO-CNN)2(PCy3)2(4,4′-bipy)](BF4)2 · 1.5CH2Cl2 (2) (bipy = bipyridine), [Cu2(MeO-CNN)2(PCy3)2(bpete)](BF4)2 · 4CH2Cl2 (3) (bpete = trans-1,2-bis(4-pyridyl)ethene) and [Cu2(MeO-CNN)2(PCy3)2(4,4′-azpy)] (BF4)2 · 1.5CH2Cl2 (4) (azpy = azobispyridine). Crystallographic studies of complexes 1-4 show that each copper(I) center adopts a pseudo-tetrahedral coordination geometry. Complexes 2-4 consists of -Cu(MeO-CNN)(PCy3) units which are linked through 4,4′-bipy, bpete and 4,4′-azpy, respectively. The UV-Vis spectra of these four complexes all exhibit intense high-energy absorptions at λmax < 340 nm and broad visible bands in a range of 430-550 nm, ascribed to intraligand (IL π → π) transitions and metal-to-ligand charge-transfer (MLCT) transitions, respectively. The density functional theory calculation was used to interpret the absorption spectrum of 1, which further supports the assignment of MLCT character. The binuclear complexes 2 and 3 both display red solid-state emissions centred at 620 and 660 nm from metal-to-ligand charge-transfer excited state, respectively. Interestingly, the electron paramagnetic resonance (EPR) spectral measurements confirm copper(I) complexes oxidized to corresponding copper(II)-halide product upon excitation at 355 nm in dichloromethane solution.  相似文献   

16.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

17.
A systematic investigation of the CuCl2/Mebta (Mebta = 1-methylbenzotriazole) reaction system is described, involving the determination of the influence of the CuII:Mebta ratio, the nature of solvent and the presence of counterions on the identity of the reaction products. As a consequence, complexes [Cu2Cl4(Mebta)4] (1), [CuCl2(Mebta)2] (2), {[Cu2Cl4(Mebta)2]}n (3), [Cu4OCl6(Mebta)4] · 0.25H2O (4 · 0.25H2O) and [Cu2Cl2(Mebta)6](ClO4)2 (5) have been isolated and structurally characterized by single-crystal X-ray studies. Mebta behaves as a monodentate ligand binding through N(3). 1 is a dinuclear complex, the structure of 2 consists of discrete monomeric units, and that of 3 is composed of linear, well-separated polymeric chains of CuII atoms. The molecules of 4 · 0.25H2O have a central μ4-oxide ion surrounded tetrahedrally by four CuII atoms. In the cations of 5 the two CuII centres are asymmetrically bridged by two chloro ligands, with three Mebta molecules completing five coordination at each metal. Complexes were characterized by spectroscopic (IR, far-IR, solution UV/Vis) and thermal decomposition (TG, DTG, and DTA) techniques. Variable-temperature magnetic susceptibility data for 1, 3 and 5 showed intramolecular (1, 5) and intrachain (3) ferromagnetic exchange interactions. Estimates of the Jparameters, experimentally derived, were in close agreement with a new magneto-structural criterion developed by us, holding for bis(μ-chloro) copper(II) dimers. A comparison between the CuCl2/Mebta and CuBr2/Mebta systems is also presented.  相似文献   

18.
Treatment of 7,8-benzo[h]quinoline (bhq-H, 1) and 10-methyl benzo[h]quinoline (bhq-Me, 3) with [Rh(C2H4)2(THF)2][BF4] resulted in double C-H activation of aliphatic and aromatic C-H bonds, yielding the Rh(III) complexes 4 and 5, respectively. The structures of 4 and 5 were revealed by X-ray diffraction. The reaction of 1 with two other slightly different rhodium precursors, [Rh(olefin)n(THF)2][BF4] (COE (n = 2), COD (n = 1)), led to completely different products, a dinuclear complex 7 and a trinuclear complex 6, respectively, which were characterized by X-ray diffraction. Complex 6 exhibits a rare linear Rh-Rh-Rh structure. Utilizing excess of 1 with [Rh(COD)(THF)2][BF4] led to the formation of a new product 8 with no C-H bond activation taking place. Additional C-H activation products of 1, cationic and neutral, in the presence of PiPr3 (9a, 9b and 10) are also presented.  相似文献   

19.
The alkoxo-bridged dinuclear copper(II) complexes [Cu2(ap)2(NO2)2] (1), [Cu2(ap)2(C6H5COO)2] (2) and [Cu2(ap)2μ-1,3-C6H4(COO)2(dmso)2]·dmso (3) (ap = 3-aminopropanolato and dmso = dimethyl sulfoxide) have been synthesized via self-assembly from copper(II) perchlorate, 3-aminopropanol as main chelating ligand and nitrite and isophthalate anions as spacers and benzoate anion as auxiliary ligand. Complexes 1 and 3 crystallize as 2D and 1D coordination polymers, respectively, and their structures consist of dinuclear [Cu2(ap)2]2+ units connected with nitrite and isophthalate ligands. The adjacent dinuclear units of 2 and 1D polymers of 3 are further connected by hydrogen bonds resulting in the formation of 2D layers. The variable temperature crystallographic measurements of 1 at 100, 173 and 293 K indicate the static Jahn-Teller distortion with librational disorder in the nitrite group. Experimental magnetic studies showed that complexes 1-3 exhibit strong antiferromagnetic couplings. The values of the magnetic exchange coupling constant for 1-3 are well reproduced by the theoretical calculations.  相似文献   

20.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号