首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinate-N-oxide and isonicotinate-N-oxide have been employed to synthesize four heterometallic metallamacrocycles [(dppf)2Pd2(nicotinate-N-oxide)2](OTf)2 (1), [(dppf)2Pt2(nicotinate-N-oxide)2](OTf)2 (2), [(dppf)2Pd2(isonicotinate-N-oxide)2](OTf)2 (3) and [(dppf)2Pt2(isonicotinate-N-oxide)2](OTf)2 (4). The complexes represent the first examples of metallamacrocycles driven by solely Pd(II)/Pt(II)-O coordination using carboxylate-N-oxide donor. All the complexes 1-4 are characterized by IR, UV-Vis, multinuclear NMR spectroscopic and ESI-MS studies. The molecular structures of the complexes 1 and 3 are unambiguously determined by single crystal X-ray diffraction analysis. Despite the possibility of formation of several linkage isomers due to ambidentate nature of the donors, exclusive formation of [2 + 2] self-assembled single isomeric metallamacrocycle in each case is interesting observation.  相似文献   

2.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd33-3)2(dppp)3](OTf)6.  相似文献   

3.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

4.
The coordination chemistry of the diphosphine ligands 2,2-bis(diphenylphosphinomethyl)propionic acid, 1, and 2,2-bis(diphenylphosphinomethyl)propionate, 2, with copper(I), silver(I), gold(I), palladium(II) and platinum(II) is described. Structure determinations show that the carboxylic acid group in 1 can hydrogen bond to solvent molecules, to anions or to the carboxylic acid group of a neighboring complex, as in the complexes [MCl2(1)] · 2DMSO (M = Pd or Pt), [Pt(1)2](OTf)2 or [Pd(NCMe)2(1)](OTf)2, respectively. The tridentate diphosphine-carboxylate ligand 2 forms oligomeric or polymeric complexes, such as [{Ag(2)}n], [{PdCl(2)}n] or [{PtMe(2)}n].  相似文献   

5.
The double-helicate dinuclear silver(I) complex [Ag2L2](SO3CF3)2 (1) was obtained by reaction of AgSO3CF3 with 4′-phenyl-terpyridine (L). Each Ag+ ion is coordinated by two N-atoms from one of the ligands and by one N-atom of the other ligand, forming an irregular Ag2N6 bi-triangle geometry, with a metallic bond between the two silver ions. Complex 1 reacts with potentially bidentate ligands (L1), such as 9,10-bis(diphenylphosphino)anthracene (PAnP), 4,4′-dipyridyl or bis(diphenyl phosphino)methane (DPPM), to give the corresponding dinuclear complexes with bridging L1, [Ag2L2(μ-L1)](SO3CF3)2 (L1 = PAnP 2, 4,4′-dipyridyl 3 or DPPM 4), whereas on reaction with PPh3 forms the mononuclear complex [AgL(PPh3)](SO3CF3) 5. Reaction of 1 with the potentially tridentate ligand tris(2-diphenylphosphinoethyl)amine (NP3) results in complete decomposition of the coordination spheres to form [Ag(NP3)](SO3CF3) 6. Compound 1 shows a strong fluorescence in the solid state with its excitation band at 383.5 nm, the emission band at 535.5 nm and the lifetime of 4.20 ns, but the derived complexes do not show fluorescent properties. The photoluminescence of 1 in various solvents was also studied. The complexes were characterized by 1H NMR, elemental analysis, IR, MS, UV and single crystal X-ray diffraction.  相似文献   

6.
Reaction of [NiCl2(dtbpe)] (dtbpe = 1,2-bis(di-tert-butylphosphino)ethane) with one equivalent of NaBArF4 (BArF4 = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) gives the dinuclear chloro-bridged nickel complex [Ni2(μ-Cl)2(dtbpe)2](BArF4)2 (1). [Ni(solv)6](BF4)2 reacts with dtbpe to give, depending on the solvent, the fluoro-bridged complex [Ni2(μ-F)2(dtbpe)2](BF4)2 (2) (solv = THF) or the mononuclear chelate complex [Ni(MeCN)2(dtbpe)](BF4)2 (3) (solv = MeCN). In 1-3, nickel cations are coordinated in a square-planar fashion according to X-ray crystallography. No Ni-Ni interaction was observed in dinuclear halogen-bridged complexes 1 and 2.  相似文献   

7.
The paper explores the capability of [(dppf)Pt(H-nbu2-DTO)]Cl (2) (dppf = 1,1′-diphenylphosphinoferrocene; H-nbu2-DTO = di-nbutyl-dithioxamidate) to act as a starting module for heterometallic linear chains. Actually, the reaction of 2 with [RuCl2(p-cymene)]2 affords the heterotrimetallic complex [Cl(p-cymene) Ru(μ-nbu2-DTO κ-N,N Ru κ-S,S Pt)Pt(dppf κ-P,P Pt) ]2 (4). However 2, allowed to stand, provides a blue compound of formula [(dppf)Pt(H-nbu2-DTO)]nCln (3), the most reliable value of n being 6. The oxidation behavior of the new species 2-4 has also been investigated. In particular, the oxidation behavior of cyclic compound 3 is quite unusual, and suggests a large delocalization of the HOMO over the whole multicomponent molecule.  相似文献   

8.
Reactions of AgClO4, Zn(CH3COO)2 · H2O and CuI with the ligand 4,4′-dipyridylsulfide (dps) in 1:1 ratio give rise to coordination polymers 1-3 and 5, the structures of which were characterized by X-ray crystallography. Polymers [Ag2(dps)2](ClO4)2 · MeCN (1) and [Ag2(dps)22-MeCN)(MeCN)](ClO4)2 · MeCN · H2O (2) are pseudo-supramolecular isomers, differing from each other in the coordination geometry of silver atom and the packing pattern. Both 1 and 2 are zigzag coordination polymers bridged by weak Ag?Ag, Ag?S or Ag?NC-CH3 interactions to form double stranded coordination polymers. While [Zn(dps)(CH3COO)2] (3) is a zigzag single stranded coordination polymer, [Zn(dps)2(H2O)2](ClO4)2 · H2O (4) is an unusual mononuclear complex with a box-like structure. Interesting intermolecular hydrogen bonding present in the compounds 3 and 4 leads to 3D hydrogen-bonded network structure.Coordination polymer [Cu2I2(dps)2] (5) is a non-interpenetrating (4,4) net. Photoluminescence properties of the compounds 1-5 have been examined in solid states at room temperature. These compounds have been found to exhibit yellow and blue photoluminescence.  相似文献   

9.
This work describes the reactivity of compounds [Pd(dmpz)2(Hdmpz)2] (A) (dmpz = 3,5-dimethylpyrazolate, Hdmpz = 3,5-dimethylpyrazol) and [Pd2(μ-dmpz)2(dmpz)2(Hdmpz)2] (B) towards several dicarboxylic acids and also towards perchloric acid. The compounds [Pd(Hdmpz)4](O2C-(CH2)n-CO2H)2 [n = 1 (1), 3 (2)] have been obtained by treatment of [Pd(dmpz)2(Hdmpz)2] (A) with two equivalents of malonic (HO2C-CH2-CO2H) and glutaric (HO2C-(CH2)3-CO2H) acids. The X-ray study on a crystal of [Pd(Hdmpz)4](O2C-(CH2)3-CO2H)2 (2) revealed that the glutarate anions link to the cationic complex [Pd(Hdmpz)4]2+ through the carboxylate group by charge-assisted N-H(+)?O(−) hydrogen bonds. Additionally, the carboxylate anions form uncommon dimeric rings on both sides of the metal complex via a pair of O-H?O hydrogen bonds, yielding a hydrogen bonded polymeric chain with alternating inorganic [Pd(Hdmpz)4]2+ and organic fragments. The dinuclear complexes [Pd2(μ-dmpz)2(O2C-(CH2)n-CO2)(Hdmpz)2] [n = 0 (5), 1 (6)] were obtained from equimolar amounts of [Pd2(μ-dmpz)2(dmpz)2(Hdmpz)2] (B) and the corresponding dicarboxylic acid, HO2C-(CH2)n-CO2H (n = 0, 1). However, the synthesis of 5 and 6 requires two steps, the protonation of both terminal dmpz groups in B with HClO4 to give [Pd2(μ-dmpz)2(Hdmpz)4](ClO4)2 (4) and the subsequent treatment of this cationic palladium complex with salts of the corresponding dicarboxylic acids. The X-ray structures of compounds 5 and 6 are reported. Both in 5 and 6, the Pd2N4 ring shows a typical boat-like conformation and the metal atoms are separated in about 3.3 Å. Both 5 and 6 are asymmetric and contain two Hdmpz groups - H-bond donors - at one end, and two CO groups from the dicarboxylate anion - H-bond acceptors - at the other, in such a way that the donor end of one molecule links with the acceptor end of its neighbour forming a hydrogen-bonded polymeric chain. The synthesis and X-ray study of compounds [Pd(Hdmpz)4](ClO4)2 (3) and [Pd2(μ-dmpz)2(Hdmpz)4](ClO4)2 (4), obtained by reaction of [Pd(dmpz)2(Hdmpz)2] (A) and [Pd2(μ-dmpz)2(dmpz)2(Hdmpz)2] (B) with two equivalents of perchloric acid, are also reported.  相似文献   

10.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

11.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

12.
Acetonitrile is easily displaced from [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (R = 2,6-Me2C6H3 (Xyl) (1a); Me (1b)) upon stirring in THF at room temperature in the presence of [NBu4][SCN]. The resulting complexes trans-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (trans-2a); Me (trans-2b)) are completely isomerised to cis-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (cis-2a); Me (cis-2b)) when heated at reflux temperature. Similarly, the complexes cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(NCO)(Cp)2] (M = Fe, R = Me (4a); M = Ru, R = Xyl (4b); M = Ru, R = Me (4c)) and cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(N3)(Cp)2] (M = Fe, R = Xyl (5a); M = Fe, R = Me (5b); M = Ru, R = Xyl (5c)) can be obtained by heating at reflux temperature a THF solution of [M2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (M = Fe, R = Xyl (1a); M = Fe, Me (1b); M = Ru, R = Xyl (1c); M = Ru, R = Me (1d)) in the presence of NaNCO and NaN3, respectively. The reactions of 5 with MeO2CCCCO2Me, HCCCO2Me and (NC)(H)CC(H)(CN) afford the triazolato complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3C2(CO2Me)2}(Cp)2] (M = Fe, R = Xyl (6a); M = Fe, R = Me (6b); M = Ru, R = Xyl (6c)), [M2{μ-CN(Me)(R)}(μ- CO)(CO){N3C2(H)(CO2Me)}(Cp)2] (M = Fe, R = Me (7a); M = Ru, R = Xyl (7b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3C2(H)(CN)}(Cp)2] (8), respectively. The asymmetrically substituted triazolato complexes 7-8 are obtained as mixtures of N(1) and N(2) bonded isomers, whereas 6 exists only in the N(2) form. Methylation of 6-8 results in the formation of the triazole complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(CO2Me)2}(Cp)2][CF3SO3] (9), [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3(Me)C2(H)(CO2Me)}(Cp)2][CF3SO3] (M = Fe, R = Me (10a); M = Ru, R = Xyl (10b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(H)(CN)}(Cp)2][CF3SO3], 11. The crystal structures of trans-2b, 4b · CH2Cl2, 5a, 6b · 0.5CH2Cl2 and 8 · CH2Cl2 have been determined.  相似文献   

13.
The study of the mid-late first row transition metal co-ordination chemistry of the pyridazine-containing Schiff-base macrocycle L1 [derived from the (2 + 2) condensation of 3,6-diformylpyridazine and 1,3-diaminopropane] has been completed. Transmetallation reactions of [Pb2(4 + 4)](ClO4)4 (1) under appropriate conditions have led to the formation of the following complexes, [Ni2L1(NCS)2(SCN)2] (3), [{Pb2L1}23-OH)2](ClO4)6 (4), and [Zn2L1(CH3CN)4](ClO4)4 (5 · 4CH3CN), all of which have been structurally characterised. The analogous triflate salt of 5, [Zn2L1](CF3SO3)4 (6), can only be obtained by template reaction, as transmetallation of 1 with Zn(CF3SO3)2 · 6H2O gave 5, albeit in reduced yield. Attempts to synthesise pure [Fe2L1(CH3CN)4](ClO4)4 (7) using the transmetallation procedure, from either [Pb2(4 + 4)](ClO4)4 or [Zn2L1(CH3CN)4](ClO4)4, were unsuccessful. The electrochemical studies carried out on [Zn2L1](ClO4)4 (5) revealed multiple reduction processes and associated oxidations, but no processes corresponding to oxidation of 5.  相似文献   

14.
Solution and solid state 31P NMR studies were carried out on a series of [Pd2X2(dppm)2] (X = Cl (1a), Br (1b), I (1c)), or [Pd2XY(dppm)2] (X = Cl, (1d)) complexes and on methyl substituted derivatives such as [Pd2Cl2(dppm)(dppmMe)] (2), syn-[Pd2Cl2(dppmMe)2] (3), and anti-[Pd2Cl2(dppmMe)2] (4) (dppmMe = 1,1-bis(diphenylphosphino)ethane) in order to study and understand the conformational behaviour of the eight-membered Pd2P4C2 rings depending on the substituents and their stereochemistry. These complexes with metal-metal bonds and mutually trans-dppm ligands act as molecular pendulums. On the basis of temperature dependent spectra qualitative correlations have been found between the molecular conformations and the rate of a specific intramolecular motion called “swinging”. While for the extended-boat conformers (2 and 3) this exchange process is of intermediate energy (41-45 kJ mol−1), the barrier is definitely higher (∼54 kJ mol−1) for the extended-chair conformer 4. Changes of symmetry relations are reflected very vividly in the 31P NMR spectra.The observed different chemical shifts, “swinging” rates and activation free energies obtained for the boat and chair conformers are explained by the steric effects and low-temperature conformations of the axial phenyl groups.  相似文献   

15.
The reaction of AgX with the diphosphazane ligand, PriN(PPh2)2 (L) gives the polymeric complexes, [Ag2(μ-X)2(μ-L)]n (X = NO31a or OSO2CF31b). Single crystal X-ray analysis of 1a reveals a novel structural motif formed by interlinking of giant 40-membered rings; the diphosphazane ligand L adopts a unique ‘Cs’ geometry. These polymeric complexes exhibit a completely reversible ring-opening polymerization-depolymerization relationship with the dinuclear and mononuclear complexes, [{Ag(μ-L)(X)}2] (X = NO32a, X = OSO2CF32b) and [Ag(κ2-L)2]X (X = NO33a, X = OSO2CF33b).  相似文献   

16.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

17.
A new series of biscyclometalated dinuclear rhodium (II) compounds with the general formula Rh2(O2CR)2(PC)2 · 2H2O, being PC = (C6H4)P(C6H5)2, R = CH3 (1 · 2H2O), PC = [(p-CH3 OC6H3)P(p-CH3 OC6H4)2], R = CF3 (2 · 2H2O), PC = (C6H4)P[CH(CH3)2]2, R = CH3 (3 · 2H2O) and PC = (C6H4)P(C6H5)2, R = C6F5 (4 · 2H2O) has been obtained. The crystal structures for these compounds have been determined by X-ray diffraction and the main structural trends, bond lengths, bond angles and torsion angles have been analyzed, and have also been compared with the structural parameters for different analogous complexes described previously in the literature.  相似文献   

18.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

19.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

20.
A series of pyrazolyl palladium(II), platinum(II) and gold(III) complexes, [PdCl2(3,5-R2bpza)] {R = H (1), R = Me (2), bpza = bis-pyrazolyl acetic acid}, [PtCl2(3,5-R2bpza)] {R = H (3a), R = Me (4)}, [AuCl2(3,5-R2bpza)]Cl {R = H (5a), R = Me (6a)} and [PdCl2(3,5-R2bpzate)] {R = Me (7)} have been synthesised and structurally characterised. Single crystal X-ray crystallography showed that the pyrazolyl ligands exhibit N^N-coordination with the metals. Anticancer activities of six complexes 1-6a were investigated against CHO cells and were found to have low activities. Substitution reactions of selected complexes 1, 2, 3a and 5a with l-cysteine show that the low anticancer activities compounds and that the rate of substitution with sulfur-containing compounds is not the cause of the low anticancer activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号