首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and characterization of the neutral 2+1 mixed ligand complex fac-Re(CO)3(acac)(isc) (4) with acetylacetonate (acac) as the bidentate ligand and an isocyanide (the isocyanocyclohexane, isc) as the monodentate ligand is described. The synthesis of 4 proceeds through the intermediate formation of the fac-Re(acac)(H2O)(CO)3 precursor complex 2. Complex 4 was characterized by elemental analysis, spectroscopic methods, and X-ray crystallography showing a distorted octahedral arrangement of the ligands around Re. At technetium-99m level, the corresponding fac-99mTc(acac)(isc)(CO)3 complex 5 was obtained in high yield by reacting the fac-99mTc(acac)(H2O)(CO)3 precursor complex 3 with isocyanocyclohexane and its structure was established by chromatographic comparison with the prototypic rhenium complex using high performance liquid chromatography.  相似文献   

2.
The novel oxorhenium dichlorides mer-[ReO(L1)Cl2] (1) and fac-[ReO(L2)Cl2] (2) (L1 = 2-[2-(pyrazol-1-yl)ethyliminomethyl]phenolate; L2 = 2-[2-(pyrazol-1-yl)ethylaminomethyl]phenolate) were synthesized by reacting [NBu4][ReOCl4] with L1H and L2H, respectively. X-ray structural analysis of 1 and 2 has shown that L1 and L2 act as (N,N,O)-tridentate chelators coordinating to the Re(V) centre in a meridional and in a facial fashion, respectively. The reactivity of 2 towards potential bidentate/dianionic substrates is strongly dependent on the donor atom set, being observed that the presence of sulphur favours the displacement of the ancillary ligand (L2). By contrast, complex 2 reacted with (O,O)-bidentate substrates (1,2-ethanediol and oxalic acid) providing the mixed-ligand complexes fac-[ReO(L2)(OCH2CH2O)] (3) and fac-[ReO(L2)(C2O4)] (4). Complexes 3 and 4 are air and water-stable and have been characterized by the common spectroscopic techniques (IR, 1H and 13C NMR) and by X-ray diffraction analysis.  相似文献   

3.
The synthesis, structure and spectral and redox properties of the copper(II) complexes [Cu(pmtpm)Cl2] (1) and [Cu(pmtpm)2](ClO4)2 (6), where pmtpm is the linear tridentate ligand 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine containing a thioether and two pyridine donors, are described. Also, the mixed ligand complexes [Cu(pmtpm)(diimine)](ClO4)2 (2-5), where the diimine is 2,2′-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp) (4) or dipyrido-[3,2-d:2′,3′-f]-quinoxaline (dpq) (5), have been isolated and studied. The X-ray crystal structures of the complexes 1, [Cu(pmtpm)(2,9-dmp)](ClO4)24 and 6 have been successfully determined. The complex 1 possesses a trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry in which three corners of the square plane are occupied by two nitrogens and thioether s of pmtpm ligand and the remaining equatorial and the axial positions by two chloride ions. The complex 4 contains a CuN4S chromophore also with a TBDSBP coordination geometry in which two nitrogens and the thioether sulfur of pmtpm ligand occupy three corners of the square plane. One of the two nitrogens of 2,9-dmp ligand is equatorially coordinated and the other axially to copper. On the other hand, the complex 6 is found to possess a square based pyramidal distorted trigonal bipyramidal (SPDTBP) coordination geometry. The CuN2S trigonal plane in it is comprised of the pyridine and imine nitrogens and the thioether sulfur of the pmtpm ligand. The pyridine nitrogens of the ligand occupy the axial positions and the second thioether sulfur remains uncoordinated. On long standing in acetonitrile solution the mixed ligand complexes 2 and 3 undergo ligand disproportionation to provide the corresponding bis-complexes of bpy and phen, respectively, and 6. The electronic and EPR spectral parameters and the positive redox potential of complex 4 are consistent with the equatorial location of the thioether sulfur in the square-based coordination geometry around copper(II). On the other hand, the higher g and lower A values and lower E1/2 values for the complexes 2, 3 and 5 are consistent with the axial coordination of the thioether sulfur. Also, the Cu(II)/Cu(I) redox potentials increase with increase in number of aromatic rings of the diimine ligand. The steric and electronic effects of the bidentate diimine ligands in orienting the thioether coordination to axial or equatorial position are discussed.  相似文献   

4.
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH2) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH2) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [CoIII(dmoInH)2]Cl·2H2O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [CoIII(dmoInH)2]Cl·2H2O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [CoIII(dmoBH)2]Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH2, compared to dmoBH2, in the solid state. Comparing the structure of the [CoIII(dmoInH)2]Cl·2H2O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.  相似文献   

5.
The first complexes that contain the 2,6-bis(dicyclohexylphosphinomethyl)pyridine ligand (PNP) have been isolated and characterized. The reactions of K4Mo2Cl8, (n-Bu4N)2Re2Cl8 and PdBr2(1,5-COD) afford Mo2Cl4(PNP)(HPCy2) (1), ReCl3(PNP) (2) and PdBr2(PNP) (4), respectively, while from the reaction of PNP with cis-Re2(μ-O2CCH3)2Cl4(H2O)2 the heteromacrocylic dication [Cy2P{CH2pyCH2}2PCy2]2+ has been isolated as its mixed [Cl]/[ReO4] salt (3). The reaction of cis-Re2(μ-O2CCH3)2Cl4(H2O)2 with bis(diphenylphosphinomethyl)sulfide (PSP) gives the mononuclear Re(V) complex ReO(OEt)Cl2(PSP) (5) in which the S atom is not coordinated. The structures of 1-5 have been established by X-ray crystallography, that of 5 being the first for a complex of this ligand.  相似文献   

6.
The reaction of the rhenium(V) nitrido complex [Re(N)Cl2(PPh3)2] with the tripodal ligand N(CH2CH2PPh2)3 (NP3) in THF gave [Re(N)Cl22-P,P-NP3)] (1) in which NP3 acts as a tridentate ligand using the nitrogen and two phosphorus donors for coordination. Refluxing 1 in a polar solvent such as ethanol produced [(η4-NP3)Re(N)Cl]Cl (2) in which NP3 acts as a tetradentate ligand. Treatment of complex [Re(O)Cl3(AsPh3)2] containing the [ReO]3+ core with NP3 in THF yielded [ReCl33-N,P,P-(N{CH2CH2Ph2}2{CH2CH2P(O)Ph2})}] (3). Complexes 1 and 3 have been characterized by single-crystal X-ray analyses.  相似文献   

7.
Reaction of the ligands diphenylphosphinylacetic acid Ph2P(O)CH2COOH (1) and 2-(tert-butylthio)phenyldiphenylphosphine oxide Ph2P(O)C6H4tBuS (2) with “MoO2Cl2”, resulted in two complexes MoO2Cl2Ph2P(O)CH2COOH (3) and MoO2Cl2Ph2P(O)C6H4tBuS(O) (4). Complexes 3 and 4 were isolated and analysed by 1H NMR, 31P NMR and X-ray crystallography. Complex 3 crystallised with a molecule of the free ligand in a 1:1 ratio (3·1) and complex 4 crystallised with molecules of the solvent CH2Cl2 within the unit cell in a 2:1 ratio (4·0.5CH2Cl2). Tetrameric arrangements comprised of hydrogen bonds were observed in complexes 1 and 3. Complex 4 exhibited a seven-membered ring structure owing to the oxidation of the sulphide in 2 to sulphoxide and coordination of this ligand via the oxygen atoms to the molybdenum atom.  相似文献   

8.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

9.
The complexes {ReOCl2[(py)2C(O)(OR)]}, (R = CH2CH3 (1), CH2CH2CH3 (2)) were obtained from the metal-assisted alcoholysis reaction of di-2-pyridylketone. Their crystal structures were determined by single-crystal X-ray diffraction. The structures of 1 and 2 consist of neutral mononuclear molecules containing the [ReO]3+ core. In both compounds the Re(V) central ion is also bonded to an oxygen and both nitrogens from the organic ligand and two chlorides in a distorted octahedral environment. Cyclic voltammograms in CH3CN solutions showed two main redox responses, both of them involving one electron transfer. Comparative theoretical studies on equilibrium geometries and electronic properties were conducted in the framework of the density functional theory (DFT).  相似文献   

10.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

11.
A series of new ruthenium(II) carbonyl chloride complexes with pyridine-functionalised N-heterocyclic carbenes [Ru(Py-NHC)(CO)2Cl2], [Py-NHC = 3-methyl-1-(2-pyridyl)imidazol-2-ylidene, 1 (1a and 1b); 3-methyl-1-(2-picoyl)imidazol-2-ylidene, 2 (2a and 2b); 3-methyl-1-(2-pyridyl)benzimidazolin-2-ylidene, 3 (3b); 3-methyl-1-(2-picoyl)benzimidazolin-2-ylidene, 4 (4a and 4b); 1-methyl-4-(2-pyridyl)-1,2,4-triazoline-5-ylidene, 5 (5a and 5b)] have been prepared by transmetallation from the corresponding silver carbene complexes and characterized by NMR, IR spectroscopy and elemental analysis. In these complexes with bidentate Py-NHC ligands, one CO ligand is trans to the Py ligand. In 1a, 2a, 4a, and 5a, the NHC ligand is trans to the other CO ligand, thus leaving the two Cl ligands trans to each other. In 1b, 2b, 3b, 4b, and 5b, the NHC ligands are trans to one Cl ligand, and the two Cl ligands are cis to each other. The structures for 1b, 2b, 3b and 4b have been determined by single-crystal X-ray diffraction. These complexes are efficient catalysts in the transfer hydrogenation of acetophenone and their catalytic activities are found to be influenced by electronic effect of the N-heterocyclic carbene ligands.  相似文献   

12.
Lead(II) complexes of S-methyldithiocarbazate (SMDTC), [Pb(SMDTC)(NO3)2] (1) and S-benzyldithiocarbazate (SBDTC), [Pb(SBDTC)(NO3)2] (2) have been synthesized for the first time and characterized by elemental analysis, IR and TGA techniques. The complexes were obtained by addition of the appropriate ligand to an aqueous ethanolic solution of lead(II) nitrate in 1:1 molar ratio. The X-ray crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. In complex 1, lead(II) is in a nine coordinated sphere with seven oxygen atoms of the nitrate groups and thione sulfur, β-nitrogen of neutral bidentate NS chelating ligand. Three nitrate groups act as bidentate chelating whereas the fourth nitrate group is coordinating to the central lead(II) and at the same time it bridges with neighboring lead(II) atom. Coordination geometry of the central lead(II) atom has a tricapped trigonal prismatic arrangement with streochemically inactive lone pair. The lead atoms are linked into polymeric chains and these chains form twin polymeric ribbons linked through bridging oxygen atoms. The N-H?O hydrogen bond network between NSMDTC and Onitrate atom leads to self-assembled molecular conformation and stabilizes the crystal structure. The complex 2 with similar spectral and thermal behavior is expected to have a tricapped trigonal prismatic structure. The thermal behavior studies shows that the complexes start to decompose at relatively low temperature (ca. 110 °C) to give PbS residue.  相似文献   

13.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

14.
Six lanthanide two-dimensional network coordination polymers with the general formula of [Ln(pmida)(NO3)(H2O)]n, where Ln = La (1), Nd (2), Sm (3), Gd (4), Dy (5), Er (6) and pmida2− = N-(2-pyridylmethyl)iminodiacetate, have been synthesized by hydrothermal process and characterized by elemental analysis, Infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. All crystals are isostructural and crystallize in the monoclinic space group P21/a. The lanthanide(III) ion is nine-coordinated in a geometry of distorted tricapped trigonal prism by two N atoms and two O atoms from one pmida2− ligand, two bridging carboxylate O atoms from other two pmida2− ligands, two O atoms of a bidentate chelating nitrate and a O atom of a coordinated water molecule. The luminescent properties of [Sm(pmida)(NO3)(H2O)]n (3) and [Dy(pmida)(NO3)(H2O)]n (5) were investigated.  相似文献   

15.
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaldehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2′-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [VIVO(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [VVO(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of VIV → VV) in the synthesis of pentavalent complexes (5) and (6). [VIVO(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [VVO(L)(hq)] complexes are diamagnetic. The X-ray structure of [VVO(L2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by ∼0.07 Å and is identical with V-O (carboxylate) bond. 1H NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)-(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near −0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+E1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E1/2 increases in the order: (L2)2− < (L1)2−.  相似文献   

16.
The [ReOX3(AsPh3)(OAsPh3)] (X = Cl or Br) complexes react with two equivalents of 3,5-dimetylopyrazole (3,5-Me2pzH) in acetone at room temperature to give [{Re(O)X2(3,5- Me2pzH)2}2(μ-O)] (1 and 2). In the case of [ReOBr3(AsPh3)(OAsPh3)], a small quantity of the dinuclear rhenium complex [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (3) has been isolated next to the main product 2. Treatment of [ReOX3(PPh3)2] compounds with two equivalents of 3,5-Me2pzH in acetone at room temperature leads to the isolation of symmetrically substituted dinuclear rhenium complexes [{Re(O)X(PPh3)}2(μ-O)(μ-3,5-Me2pz)2] (4 and 5). Refluxing of [ReO(OEt)X2(PPh3)2] complexes with 3,5-Me2pzH in ethanol affords unsymmetrically substituted dinuclear rhenium [{Re(O)X(PPh3)}(μ-O)(μ-3,5-Me2pz)2{Re(O)X(3,5- Me2pzH)}] complexes (6 and 7). The complexes obtained in these reactions have been characterised by IR, UV-Vis, 1H and 31P NMR. The crystal and molecular structures have been determined for 1, 2, 3, 4, 6 and 7 complexes.  相似文献   

17.
Monodentate and bidentate ligands PhNHP(O)(NC4H8O)2 (1) and PhC(O)NHP(O)(NH(tert-C4H9))2 (2) were used to prepare new 7, 9 and 10-coordinated lanthanum(III) complexes; La(1)2Cl3(H2O)2 (3), La(1)2(NO3)3H2O.La(1)2(NO3)3CH3CN (4) and La(2)2(NO3)3 (5), respectively. Crystallization of compound 2 in CH3OH:CH3CN leads to one conformer in contrast to the crystallization result from CHCl3:n-C7H16 (two conformers). Compound 4 contains two independent nine-coordinated La(III) complexes that are different in the solvated molecules (H2O and CH3CN). Some structural and electronic perturbations in coordinated ligand were occurred upon complexation, that are confirmed by increase of 2JPH, 3JPH and 6JPH coupling constants from the free ligand 1 to complexes 3 and 4. The steric repulsions in the first coordination sphere of La3+ ion, metal-ligand (M-L) binding strength and PO stretching frequency are very influenced by changing the counter ion from Cl to . Comparing the X-ray crystallography data of free ligand 2 with bis-chelated complex 5, it is found that the phosphoryl group is more reactive than carbonyl counterpart. A blue shift of the ν(N-H) vibration is observed in line with the weakening of the hydrogen bond from N-H···OPhosphoryl in 1 to N-H···Cl in 3. Three dimensional butterfly-shape structures are seen in the unit cell of complex 3, which are produced by OWater-H···OMorpholine hydrogen bonds.  相似文献   

18.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

19.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

20.
The complexes [Cd(dipyr)2(sac)(H2O)] sac·H2O 1 and [Hg(dipyr)(sac)2] 2, where dipyr = dipyridylamine and sac = saccharinate, have been synthesised, and fully characterised by single-crystal X-ray diffraction at 120 K. The geometry around Cd in 1 is approximately octahedral, with the metal coordinated by two bidentate dipyr ligands, one N-bonded sac and one H2O molecule; the second sac forms the counter-ion, and there is also a water of crystallisation. An extensive H-bonded network is formed. In the anhydrous Hg complex 2, the metal has approximately tetrahedral geometry, with coordination from a bidentate dipyr ligand and two N-bonded sac groups. H-bonding interactions are again extensive, even without the presence of H2O molecules in the structure, leading to chains along the a-axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号