首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three novel heterometallic complexes [Cu(en)2Cr(NCS)4(NH3)2][Cr(NCS)4(NH3)2] · 6dmf (1), [Cu(en)2Cr(NCS)4(NH3)2](OAc) (2) and [{Cu(en)2}3{Cr(NCS)4(NH3)2}2(NCS)2](NCS)2 (3) have been synthesized in a one-pot reaction from copper powder, Reineckes salt, NH4X [X = OAc (2), NCS (3)] in a dmf (1) or CH3CN (2, 3) solution of ethylenediamine (en). X-ray studies showed that 1 and 2 consist of cationic polymeric chains, formed by and building blocks that bridged through thiocyanate anions. In both complexes, distinct hydrogen bonds are present and serve to increase the dimensionality of the compound from one to two (in 1) or three (in 2). The main structural feature of 3 is the pentanuclear Cu3Cr2 cation which is H-bonded with uncoordinated thiocyanate groups generating a 3D supramolecular assembly. The shortest Cu?Cr distances are 5.840(1) Å for 1, 5.856(1) and 6.018(3) Å for 2 and 6.009(9) and 6.465(9) Å for 3. Compounds 1 and 2 are essentially paramagnets whereas compound 3 shows a weak antiferromagnetic coupling. The magnetic properties are simulated and discussed in terms of the structural features.  相似文献   

2.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

3.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

4.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

5.
The ligand 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane (L8) has afforded six-coordinate monomeric and dimeric complexes [(L8)CoII(H2O)2][ClO4]2 (1), [(L8)NiII(MeCN)2][BPh4]2 (2), [(L8)NiII(O2CMe)][BPh4] (3), and . The crystal structures of 1, 2 · MeCN, 3, and 4 revealed that the ligand L8 is flexible enough to expand its coordinating ability by fine-tuning the angle between the chelating fragments and hence folds around cobalt(II)/nickel(II) centers to act as a tetradentate chelate, allowing additional coordination by two trans-H2O, cis-MeCN, and a bidentate acetate affording examples of distorted octahedral , , and coordination. The angles between the two CoN2/NiN2 planes span a wide range 23.539(1)° (1), 76.934(8)° (2), and 69.874(14)° (3). In contrast, complex 4 is a bis-μ-1,3-acetato-bridged (syn-anti coordination mode) dicobalt(II) complex [Co?Co separation: 4.797(8) Å] in which L8 provides terminal bidentate pyridylpyrazole coordination to each cobalt(II) center. To our knowledge, this report provides first examples of such a coordination versatility of L8. Absorption spectral studies (MeCN solution) have been done for all the complexes. Complexes 1-3 are uniformly high-spin. Temperature-dependent (2-300 K) magnetic studies on 4 reveal weak ferromagnetic exchange coupling between two cobalt(II) (S = 3/2) ions. The best-fit parameters obtained are: Δ (axial splitting parameter) = −765(5) cm−1, λ (spin-orbit coupling) = −120(3) cm−1, k (orbital reduction factor) = 0.93, and J (magnetic exchange coupling constant) = +1.60(2) m−1.  相似文献   

6.
The syntheses, structures, and magnetic properties of two new μ-alkoxo-μ-pyrazolato heterobridged compounds, [Cu II2(L1-F)(μ-prz)] (1) and [Cu II2(L1-2OMe) (μ-prz)] · 0.5 CH3CN (2) (prz=pyrazolato; H2L1-F=1,3-bis(3-fluorosalicylideneamino)-2-propanol; H2L1-2OMe=1,3-bis(4,6-dimethoxy salicylideneamino)-2-propanol) have been reported. Compound 1 crystallizes in triclinic space group with a=8.6392(10) Å, b=10.6431(9) Å, c=11.6809(13) Å, α=85.972(8)°, β=71.492(9)°, and γ=72.221(9)°, while the unit cell parameters of 2 are as follows: space group: monoclinic C2/c, a=28.2948(5) Å, b=7.3033(2) Å, c=26.3933(5) Å, and β=96.243(1)°. The variable-temperature magnetic susceptibility measurements reveal that the metal centers in both the compounds are antiferromagnetically coupled with J=−200 cm−1 for 1 and J=−175 cm−1 for 2. The magnetic behaviors have been explained on the basis of two opposing factors, complementarity and countercomplementarity of magnetic orbitals.  相似文献   

7.
Tellurated alkylamine derivatives , , and have been synthesized by reacting appropriate organic halides with the nucleophile 4-CH3OC6H4Te or Te2− generated in situ by borohydride reduction of (4-CH3OC6H4Te)2 or Te powder followed by reaction with HCl of appropriate concentration. The zwitterionic species was generated when single crystals of 2 were grown in methanol at 0 °C. Complexes 1-4 exhibit characteristic 1H NMR spectra. The single crystal structures of 1-4 and 2a have been determined. In the crystals of 1, C-H?π distances have been found to be 3.31(7)-3.59(5) Å. In both 2 and 2a, weak Te?Cl interactions (3.54(2) -3.62(2) Å) are observed. The C-H?π distance in the crystal of 2 is 3.19(0) Å. In 2a and 3, water hydrogen bonds connect the water molecules with the end groups from different molecules. In the case of 3, Te?Cl weak interactions involving the Cl ions connect together two such chains. The geometry of Te in 1 is V shaped. In 2 and 3 it is pseudo trigonal bipyramidal, and in 2a, it is square pyramidal. However, in the latter case it becomes distorted octahedral due to weak Te?Cl secondary interactions. The geometry about Te in 4 is distorted octahedral due to weak Te?Cl interactions involving Cl ions. However, there are no intermolecular Te?Cl interactions.  相似文献   

8.
The preparation, crystal structures, and magnetic properties of two rhenium(IV) mononuclear compounds of formula NBu4[ReX5(DMF)] with X = Cl (1) and Br (2) are reported. 1 and 2 are isostructural complexes which crystallize in the monoclinic system with the space group P21/n. The rhenium atom is six-coordinated with five X atoms and a DMF molecule forming a somewhat distorted octahedral surrounding [values of Re-X varying in the ranges 2.317(1)-2.358(1) (1) and 2.495(1)-2.518(1) Å (2)]. Magnetic susceptibility measurements on samples of 1 and 2 in the temperature range 1.9-300 K are interpreted in terms of magnetically isolated spin quartets with large values of the zero-field-splitting (|2D| is ca. 20.2 and 39.2 cm−1 for 1 and 2, respectively).  相似文献   

9.
Several complexes of TPPMn-L, where TPP is the dianion of tetraphenylporphyrin and L is monoanion of 4-methylphenylcyanamide (4-Mepcyd) (1), 2,4-dimethylphenylcyanamide (2,4-Me2pcyd) (2), 3,5-dimethylphenylcyanamide (3,5-Me2pcyd) (3), 4-methoxyphenylcyanamide (4-MeOpcyd) (4), phenylcyanamide (pcyd) (5), 2-chlorophenylcyanamide (2-Clpcyd) (6), 2,5-dichlorophenylcyanamide (2,5-Cl2pcyd) (7), 2,6-dichlorophenylcyanamide (2,6-Cl2pcyd) (8), 4-bromophenylcyanamide (4-Brpcyd) (9), and 2,3,4,5-tetrachlorophenylcyanamide (2,3,4,5-Cl4pcyd) (10), have been prepared from the reaction of TPPMnCl and thallium salt of related phenylcyanamide. Each of the complexes has been characterized by IR, UV-Vis and 1H NMR spectroscopies.4-Methylphenylcyanamidotetraphenylporphyrin manganese(III) crystallized with one molecule of solvent CHCl3 in the triclinic crystal system and space group with the following unit cell parameters of: a = 11.596(6) Å; b = 11.768(9) Å; c = 17.81(2) Å; and α, β, γ are 88.91(9)°, 88.16(7)°, 67.90(5)°, respectively; V = 2251(3) Å3; Z = 2. A total of 4234 reflections with I > 2σ(I) were used to refine the structure to R = 0.0680 and Rw = 0.2297. The Mn(III) shows slightly distorted square pyramidal coordination with the 4-methylphenylcyanamide in the axial position, coordinated from nitrile nitrogen. The reduction of each of the TPPMn-L complexes was also examined in dichloromethane and spectroelectrochemical behavior of (1) was investigated and compared to TPPMnCl.  相似文献   

10.
The preparation and magnetic properties of three copper(II) compounds of formulae [Cu2(bpcam)2(H2O)2(C2O4)] (1), [Cu2(bpcam)2(H2O)4(C4O4)] · 10 H2O (2) and Cu2(bpcam)2(C5O5)(H2O)3 (3) [bpcam = bis(2-pyrimidyl)amidate, and are reported. The structures of two of them (1 and 2) have been solved by single crystal X-ray diffraction and consists of centrosymmetric discrete copper(II) dinuclear units bridged by bis-bidentate oxalate (1) and bis-monodentate squarate (2), with the bpcam group acting as a terminal tridentate ligand. Each copper atom in 1 exhibits a distorted elongated octahedral coordination geometry. Three bpcam nitrogen atoms and one oxalate oxygen define the basal plane while the other oxalate oxygen and a water molecule take up the axial positions. Each copper atom in 2 is in an elongated octahedral surrounding with three bpcam nitrogen atoms and one squarate oxygen in the equatorial plane and two water molecules in the axial positions. The intramolecular copper-copper separations are 5.677(1) (1) and 7.819(53) Å (2). Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K show the occurrence of weak ferromagnetic interactions through oxalato (J = +0.75 cm−1) and squarato (J = +1.26 cm−1), the Hamiltonian being defined by . These values are analyzed and discussed in the light of the available magneto-structural data for analogous systems. The quasi-Curie law observed in 3 (θ = −1.15 K) contrasts with the significant antiferromagnetic interaction through bis-chelating croconate in other structurally characterized croconate-bridged copper(II) complexes and rules out the presence of bridging croconate in this compound.  相似文献   

11.
The synthesis and characterization of three simple 1:2 silver(I) pyridine adducts of different counter-anions, [Ag(py)2]+ · X (X = ClO4, 1; BF4, 2; PF6, 3), are reported. The structural studies for 1-3 reveal the presence of strong ligand-unsupported argentophilic interactions between [Ag(py)2]+ ions, forming pairs of . The Ag?Ag contact distances are 2.96-3.00 Å. In 1 and 2, pairs of are further linked into 1-D infinite chains by a combined set of multiple Ag?Ag close contacts (3.34-3.37 Å), offset ‘head to head’ π-π stacking, and anion bridging interactions. Such combined set of interactions is anion-dependant with 1 and 2 containing anions of tetrahedral geometry and , affording essentially the same supramolecular architecture. Metal-anion interactions are crucial in organizing the 1-D chains into 3-D networks. The ES-MS studies of 1 and 2 provide positive evidence for the aggregation of silver(I) ions in solution. In contrast, for 3 with the counter-anion of octahedral , pairs of are organized into a 3-D network via a combined set of Ag?F contacts, C(H)?F hydrogen bonds, and ‘head to tail’ π-π stacking interactions. No extended 1-D polymeric chains of silver ions are present in 3.  相似文献   

12.
Reaction of CuII, K3 [Fe(CN)6] and bidentate diimine ligands by hydrothermal synthesis under different conditions affords one novel heteronuclear FeII-CuI complex, (bipy = 2,2′-bipyridine), and two homonuclear CuI complexes, [CuI(μ-CN)(bipy)]n (2) and (3) (phen = 1,10-phenanthroline). Although all the three complexes are 1D cyanide bridged helical chains, they have different helicoids of pseudo-square, pseudo-trigonal and head-to-head bistrigonal for 1, 2 and 3, respectively. The structure of 1 is extended to 2D hexagonal meshed layers by the hydrogen bonding between terminal cyanides and lattice water molecules, which also contain π-π interactions between adjacent sheets. CuI ions in 1 are distorted trigonal planar coordinated by two bridging cyanides and one terminal cyanide, whereas that in 2 and 3 are pseudo-tetrahedral coordinated by two bridging cyanides and two N atoms of a diimine. Both the latter homometallic polymers exhibit similar chain structure, and these chains are close packed with their six adjacent chains in a parallel fashion along the c-axis to form a honeycomb network. It should be noted that complex 1 is the first cyanide bridged FeII-CuI complex of helical chain structure. The spectroscopic properties of complexes 1-3 have also been investigated.  相似文献   

13.
Three new iron(III) citrate complexes [Fe2(cit)2(H2O)2](H2bpa) (1), [Fe2(cit)2(H2O)2](H2bpe) (2) and [Fe4(cit)4(H2O)4](H2bpp)2(H2O) (3) (cit = C(O)(COO)(CH2COO)2, bpa = 1,3-bis(4-pyridyl)ethane, bpe = 1,3-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane) were synthesized and characterized by elemental analysis, spectroscopic techniques and magnetic properties. Single X-ray diffraction analyses in the 1-3 complexes reveal that the iron ion is six-coordinated and is bound by two deprotonated citrates and a pair of aqua ligands in a distorted octahedral fashion. The anionic complex contains a centro-symmetrical planar of four-membered Fe2O2 ring. There are significant contributions to the stabilities of the assembled lattices in 1-3 arising from the protonated pyridine analogue counterions neutralizing the anionic charges of the complexes. The units in the complexes are connected together via hydrogen bonding to form 3D supramolecular networks. The supramolecular structures of 1-2 show alternating and motif linking the anionic moieties which are in turn interwoven with cationic moieties, while 3 shows alternating and motif. The magnetic properties of 1-3 are investigated and discussed in detail.  相似文献   

14.
Synthesis, crystal structures, and spectroscopic and magnetic properties of new one-dimensional cyano-bridged bimetallic complexes, [CuII(N-Eten)2][MII(CN)4] (N-Eten = N-ethylethylenediamine; MII = NiII (1) and PtII (2)), have been reported. Both complexes consist of one-dimensional alternate chains of CuII and MII moieties. The Pt-C bond distances of 1.997(3) and 2.001(3) Å for 2 are considerably longer than the Ni-C bond lengths of 1.866(3) and 1.872(3) Å for 1. Because of pseudo Jahn-Teller distortion, the axial Cu-N bond distances of 2.554(2) and 2.550(3) Å for 1 and 2 are longer than those of equatorial ones of 2.008(2) and 2.056(2) Å for 1 and 2.010(2) and 2.054(2) Å for 2. In contrast to MII-C bond distances, the Cu-N ones of 1 are similar to those of 2 regardless of element-substitution. These complexes indicate weak antiferromagnetic interactions with Weiss constants = − 4.68 and −3.95 K for 1 and 2, respectively. The emission spectrum of 2 (λex = 360 nm) exhibits a broad band with peaks at 22 800 and 24 000 cm−1 at 298 K. The Cu 2p1/2 and 2p3/2 peaks of XPS spectra are compared systematically to various copper(II) complexes showing different bridging features or distorted coordination geometries as models for excited structures induced by external physical conditions. The spectroscopic properties are discussed from the viewpoint of magneto-optical properties.  相似文献   

15.
Two new inorganic-organic hybrid polymers [ClBzQl]2[Cd(SCN)3.5Br0.5]·0.25H2O (1) and [ClBzMePy][Cd(SCN)3] (2) (ClBzQl = 1-(4′-Cl-benzyl)quinolinium cation and ClBzMePy = 1-(4′-Cl-benzyl)-2-methylpyridinium cation) have been synthesized and characterized by IR, UV, elemental analysis and X-ray crystallography. Crystal structure analyses show that two polymers belong to the monoclinic space group P2/n (1) and P21/c (2) with a = 18.548(2) Å, b = 9.526(1) Å, c = 20.689(2) Å, β = 94.008(1)°, V = 3646.6(5) Å3 for 1, and a = 11.195(2) Å, b = 16.415(3) Å, c = 10.751(2) Å, β = 102.930(3)°, V = 1925.7(7) Å3 for 2. The Cd atom exhibits a distorted octahedral coordination geometry for 1 and 2. For 1, a pair of 1,1-μ-SCN anions and a pair of 1,3-μ-SCN anions are alternately bridge adjacent Cd centers to form infinite polymeric chains. For 2, adjacent Cd atoms are linked by three 1,3-μ-SCN anions to form infinite [Cd(SCN)3] polymeric chains. The luminescent properties of the two polymers in the solid state at room temperature were investigated.  相似文献   

16.
The reaction of 1,3-bis(4,5-dihydro-1H-imidazol-2-yl)benzene (bib) ligand with silver(I) nitrate in a 1:1 molar ratio generated a [2 + 2] metallocyclic complex [Ag2(bib)2](NO3)2 · 2H2O, in which bib ligand displayed in cis configuration. When the additional competing ligands/counterions, such as oxlate salt, 1,2-diaminoethene (en), 1,3-diaminopropane (pn), and were introduced, respectively, to the above-mentioned reaction solution, ring-open polymerization of sliver(I) complexes {[Ag(bib)]NO3 · H2O}n (1), {[Ag(bib)2]X}n ( (2), (3)), {[Ag2(bib)2(NO2)](NO2) · 19/8H2O}n (4) and {[Ag2(bib)2](V4O12)0.5 · 3H2O · 2MeCN}n (5) were generated. In compounds 1, 4 and 5, bib ligand adopts trans configuration and twists around the Ag-Ag axis, giving rise to single-stranded helical structure with short adjacent Ag?Ag distances of 3.56, 3.56, 3.50 and 3.63 Å, respectively. Compounds 2 and 3 are 1D coordination polymers fusing the [2 + 2] metallocycle [Ag2(bib)2]2+, in which bib ligand exhibits in cis configuration and the metallocycles have longer Ag?Ag distances of 8.52 Å in 2 and 8.61 Å in 3 along with the strong intracyclicπ-π interactions between phenyl groups. Cis and trans configurations of bib coexist in solution and crystallize in complexes 1 and 2 in the solid state in the presence of en or pn. The solution of 1 and 2 can be converted into 3 via the addition of the bulky counter anion or into 4 through introduction of the competing ligand/conuterion .  相似文献   

17.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

18.
A series of complexes containing the bulky carboxylate ligand 2,4,6-triisopropylbenzoate (TiPB) of type trans-[Ru2(TiPB)2(O2CCH3)2X] [X = Cl (1), PF6 (2)] and [Ru2(TiPB)4X] [X = Cl (3), PF6 (4)] have been synthesised. The corresponding complexes trans-[Ru2(TiPB)2(O2CCH3)2] (5) and [Ru2(TiPB)4] (6) were also isolated. Magnetic susceptibility measurements indicate that the diruthenium cores have the expected three (1-4) or two (5 and 6) unpaired electrons consistent with σ2π4δ2π)3 and σ2π4δ2δ∗2π∗2 electronic configurations. Compounds 1-4 and 6 were structurally characterised by X-ray crystallography, and show the expected paddlewheel arrangement of carboxylate ligands around the diruthenium core. The diruthenium cores of complexes 3, 4 and 6 are all distorted to minimise steric interactions between the bulky carboxylate ligands. The Ru-Ru bond length in the complex 6 [2.2425(6) Å] is the shortest observed for a diruthenium tetracarboxylate and, surprisingly, is 0.014 Å shorter than in the analogous complex 4, despite an increase in the formal Ru-Ru bond order from 2.0 (6) to 2.5 (4). This is rationalised in terms of the extent of internal rotation, or distortion, about the diruthenium core. This was supported by density functional theory calculations on the model complexes [Ru2(O2CH)4] and [Ru2(O2CH)4]+, that demonstrate the relationship between Ru-Ru bond length and internal rotation. Electrochemical and electronic absorption data were recorded for all complexes in solution. Comparison of the data for the ‘bis-bis’ (1, 2 and 5) and tetra-substituted (3, 4 and 6) complexes indicates that the shortening of the Ru-Ru bond length results in a small increase in energy of the near-degenerate δ and π orbitals.  相似文献   

19.
《Inorganica chimica acta》2010,363(13):3302-8934
The reactions of L1-3Li salts containing different Y,C,Y-chelating ligands L1 = 2,6-(t-BuOCH2)2C6, L2 = 2,6-(MesOCH2)2C6 and L3 = 2,6-(Me2NCH2)2C6 with PCl3 is reported. While the presence of ligands L2,3 afforded the synthesis of dichlorophosphines L2PCl2 (2) and L3PCl2 (3), the use of ligand L1 resulted to the isolation of O → P coordinated 1-chloro-7-(t-butoxymethyl)-3H-2,1-benzoxaphosphole (1) as the result of the cyclization type reaction of dichlorophosphines L1PCl2. The hydrolysis of compounds 1-3 as well as the preparation of phosphanes L2PH2 (7), L3PH2 (8), L2PH(SnMe3) (9) and L3PH(SnMe3) (10) is also discussed. The presence of N → P coordination enabled the isolation of N → P coordinated diselenoxophosphorane L3PSe2 (11). Compounds 1-11 were characterized by the help of multinuclear NMR spectroscopy, ESI mass spectrometry and the structure of compound 11 was established by X-ray diffraction analysis.  相似文献   

20.
The symmetrical anionic and neutral dimers [H(TMSO)2]2trans-[{RuCl4(TMSO)}2](μ-pyz) (1), and mer-[{RuCl3(TMSO)2}2](μ-pyz) (2) were isolated by the reaction of [H(TMSO)] trans-[RuCl4(TMSO)2] and mer-[RuCl3(TMSO)3] with heterocyclic nitrogen donor ligand pyrazine (pyz) at room temperature. These complexes can be regarded as unprecedented examples in the general Creutz-Taube family of ruthenium dimers. Each ruthenium center in 1 and 2 has a coordination environment akin to that of known anionic and neutral monomeric Ru(III) complexes. Crystals of 1 · acetone are orange, needle like, space group , a=10.419(3) Å, b=10.539(3) Å, c=12.595(5) Å, α=69.837(16)°, β=69.968(15)°, γ=74.330(15)° and crystals of 2 · 4TMSO are orange prisms, trigonal, space group , a=33.971(5) Å, b=33.971(5) Å, c=12.210(2) Å, α=90°, β=90° and γ=120°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号