首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11-tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. Kinetic data are satisfactorily fitted by the rate law, R = kOH[OH][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 × 103 dm3 mol−1 s−1 at 25.0 ± 0.1 °C with I = 0.10 mol dm−3 (NaClO4). The large ΔH, 61.7 ± 3.2 kJ mol−1, and the large positive ΔS, 30.2 ± 10.8 J K−1 mol−1, strongly support a free-base-catalyzed mechanism for the reaction.  相似文献   

2.
The crystal and molecular structures of the N-rac-isomer of the nickel(II) complex of 14-membered amide-containing macrocycle [NiL1] · 4H2O (H2L1=5,12-dioxo-1,4,8,11-tetraazacyclotetradecane) have been determined. Two deprotonated amide and two amine donors co-ordinate to the nickel(II) in nearly square planar manner with Ni-Namine bonds longer than Ni-Namide ones (1.930 vs. 1.898 Å). Water molecules do not co-ordinate and form hydrogen bond bridges between macrocyclic units in the crystal lattice. The analysis of 1H NMR data confirmed that the solid-state conformation of the macrocycle in N-rac[NiL1] is retained in aqueous solution though equilibrated with some amount of N-meso isomer. The comparison of the spectroscopic characteristics of the M(II) and M(III) complexes and the redox potentials of M(III/II) couples (M=Ni and Cu) for ML1 with those for ML2(H2L2=5,7-dioxo-1,4,8,11-tetraazacyclotetradecane) revealed a rather small influence of the trans- vs. cis-arrangement of amide donors in co-ordination spheres of the metal ions.  相似文献   

3.
The dinucleating macrocyclic ligand 3,6,9,17,20,23-hexaaza-29,30-dihydroxy-13,27-dimethyl-tricyclo[23,3,1,111,15] triaconta-1(28),11,13,15(30),25,26,-hexaene(BDBPH) was synthesized from [2+2] condensation between a diethylenetriamine lead(II) mononuclear complex and diformal-p-cresol. By stepwise synthesis, the heterodinuclear Cu(II)Cd(II) complex was obtained. The single crystal was triclinic, space group P1, with cell constants a=13.2675(10) Å, b=16.4655(13) Å, c=17.9502(14) Å, α=87.78(10), β=68.69(10), γ=74.81(10), V=3517.6(3) Å and Z=4. Potentiometric titration reveals that Cu(II)Cd(II)BDBPHOH species dominate in basic solution from pH 7 to 12. In the hydrolysis of BNP, this dinuclear complex can provide both Lewis acid and base sites to an active phosphate diester in which nucleophilic OH attacks the substrate to fulfill the hydrolysis cycle. In this system the synergic two functional groups in one catalyst molecule exerted remarkable catalytic activity towards hydrolysis of BNP.  相似文献   

4.
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene ([15]pyN5), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN5), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN5 was investigated by 1H NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN5)]2+ determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.  相似文献   

5.
The oxidation of Ru(NH3)5NCCH2CN2+ complex by the peroxydisulfate ion in the aqueous solution yields two products, Ru(NH3)5NHCOCH2CN2+ with λmax = 373 nm and withλmax = 863 nm. The distribution of the products and the amount of oxidant required for the maximum yield of the binuclear complex depend on the acidity of the solution. The production of the binuclear complex was favored at lower acid concentrations. The formation of CC bond in the binuclear complex was characterized by both the spectral and the electrochemical results. A mechanism for the oxidation has been proposed by the kinetic studies in the region of 0.001-0.10 M acid concentrations.  相似文献   

6.
 Novel potentially five-coordinate pyridyl–pendant dioxocyclam [1-(2-pyridyl)methyl-5,7-dioxo-1,4,8,11-tetraazacyclotetradecane (H2L) and its homologs (6-methyl and 6,6-dimethyl derivatives)] have been synthesized to study nickel(II) complexation. A purple nickel(II) complex with a deprotonated amide (NiHL) was isolated from aqueous equimolar solution of H2L and Ni(ClO4)2. A yellow nickel(II) complex with two deprotonated amides (NiL) was crystallized from an H2O/CH3CN solution of H2L and Ni(OH)2. The X-ray crystal study of NiL showed a square-planar nickel(II) complex with the pyridyl–pendant remaining uncoordinated. It is concluded from the visible absorption and NMR study of NiL in aqueous solution that the four-coordinate NiL is in equilibrium with a five-coordinate square-pyramidal nickel(II) complex with the apical coordination of the pyridyl–pendant. A voltammetric study disclosed a low nickel(II/III) redox potential of +0.29 V vs SCE for NiL at pH 9.5 and 25  °C with 0.10 M Na2SO4. The nickel(II) complex NiL absorbed an equimolar amount of O2 at pH 9.5 and 25  °C, and the O2 was activated to cleave plasmid DNA. Received: 5 August 1996 / Accepted: 24 October 1996  相似文献   

7.
Two nickel (II) complexes with the formula [NiL(H2O)2] · 6H2O (1 · 6H2O) and [NiH2L(BDC)]n (2), where L = 3,10-bis(3-propylcarboxyl)-1,3,5,8,10,12-hexaazacyclo-tetradecane, BDC = trans-butene dicarboxylate, have been synthesized and characterized by elemental analyses, IR spectra and single-crystal X-ray analyses. In 1, the Ni(II) ion is six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two water molecules in axial position. In 2, the structure is made up of one-dimensional chain of [NiH2L]2+ units with BDC2− anions, in which the Ni(II) ion is also six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two carboxylate oxygen atoms from the BDC2− group in axial position. In 2, the 1D chains are aligned in a parallel mode.  相似文献   

8.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   

9.
A novel tetranuclear lanthanide(III)-copper(II) complex of macrocyclic oxamide, [Pr(CuL)3(H2O)2](SCN)3 · 1.5H2O (L = 1,4,8,11-tatraazacyclotradecanne-2,3-dione) (1), has been synthesized, structurally characterized and preliminary investigated by magnetic studies. The structure of the title complex consists of a cationic PrCu3 core, noncoordinated monovalent SCN anions and H2O molecules; the packing diagram shows open channels formed through intermolecular weak interactions. The temperature-dependent magnetic susceptibilities were analyzed by an approximate treatment being enlightened by Matsumoto et al. leading to J = −1.62 × 10−2 cm−1, Δ = 3.12 cm−1, gCu = 2.13, respectively.  相似文献   

10.
A 14-membered tetraaza macrocycle, 2,13-bis(2-carbomethoxyethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane (L2) bearing two N-CH2CH2COOMe groups, and its nickel(II) and copper(II) complexes have been prepared and characterized. The nickel(II) and copper(II) complexes of 2-(2-carbomethoxyethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane (L3) containing one N-CH2CH2COOMe group have also been prepared. The crystal structure of [NiL2](ClO4)2 shows that the complex has a slightly distorted trans-octahedral coordination geometry with two relatively short axial Ni-O (N-CH2CH2COOMe group) bonds (2.136(3) Å). In various solvents, however, a considerable proportion of [NiL2]2+ exists as a square-planar form, in which the functional pendant arms are not involved in coordination. The proportion of the square-planar isomer varies with solvents in the order of nitromethane ? acetonitrile < H2O < DMF ? DMSO. In the case of [CuL2](ClO4)2, only one N-CH2CH2COOMe group is involved in coordination. The N-CH2CH2COOMe group of [NiL3](ClO4)2 is not directly involved in coordination even in the solid state, though the functional group of [CuL3](ClO4)2 is coordinated to the metal ion.  相似文献   

11.
New hetero-functionalized macrocyclic complexes [CuL2](ClO4)2 (I) and [CuL3](ClO4)2 (II) bearing one N-CH2CONH2 or one N-CH2C(NH)NH(CH2)2CH3 pendant arm as well as one N-CH2CN group have been prepared by the selective reaction of water or n-propylamine with one of the two N-CH2CN groups in [CuL1](ClO4)2 (L1 = 2,13-bis(cyanomethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane). The complex [CuL4](ClO4)2 (III) bearing both N-CH2CONH2 and N-CH2C(NH)NH(CH2)2CH3 pendant arms can be prepared by either the reaction of I with n-propylamine or the hydrolysis of II. The N-CH2CONH2 and/or N-CH2C(NH)NH(CH2)2CH3 groups of I, II, and III are coordinated to the metal ion. The crystal structure of II shows that the complex has distorted square-pyramidal coordination polyhedron with a considerably strong apical Cu-N (N-CH2C(NH)NH(CH2)2CH3) bond (2.101(6) Å). The addition of HClO4 (?0.01 M) to an acetonitrile (or DMSO) solution of II or III produces [Cu(HL3)](ClO4)3 (IIa) or [Cu(HL4)](ClO4)3 (IIIa), showing that the N-CH2C(NH)NH(CH2)2CH3 pendant arm of each complex is readily protonated in the non-aqueous solvent; the resulting N-CH2C()NH(CH2)2CH3 group of IIa or IIIa is not involved in coordination. However, the N-CH2C(NH)NH(CH2)2CH3 group of II is not protonated even in ?1.0 M HClO4 aqueous solution. In the case of III, most of the complex exists as the protonated form [Cu(HL4)]3+ in ?0.1 M HClO4 aqueous solutions.  相似文献   

12.
The novel linear polymer of a macrocyclic polyamine copper (II) complex, which has many cyclen groups linked by epichlorohydrin, has been synthesized as a DNA cleavage agent. The structure of the polymer 3 was identified by 1HNMR and IR and its molecular weight was measured by GPC. The result of agarose gel electrophoresis assay showed that Cu-(II) complex 4 could act as a powerful catalyst for the cleavage of plasmid DNA under physiological conditions.  相似文献   

13.
A molecular rectangle [Cu{CuL1(NO3)}(H2O)(NO3)]2 (1) and two infinite molecular rectangle strands {[Cu{CuL1(NO3)}2] · 2H2O} (2) and [Cu{CuL2(ClO4)}2] (3) were prepared by reaction of “naked” Cu(II) ions with macrocyclic complex ligands CuL1 for 1 and 2 and CuL2 for 3 in metal-to-ligand molar ratios of 1:1, 1:2 and 1:2, respectively. L1 and L2 denote the dianions of diethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate and diethyl 5,6,7,8,15,16-hexahydro-15-methyl-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate, respectively. The structures of 1-3 were determined by X-ray single-crystal analyses. CuL1 in 1 and 2 and CuL2 in 3 act as angular linkers with a monodentate coordination top and a bidentate one between two Cu(II) nodes to enclose the molecular rectangle of 1 and the rectangular subunits of 2 and 3. The angular shape, the monodentate top plus bidentate top coordination mode and the self-complementarity for π?π interactions of the macrocyclic complex linkers, the ratio between the reactants and the octahedral coordination geometry of the naked Cu(II) ions jointly determined the interesting structures of metallocyclophane 1 and 1D double chain coordination polymers 2 and 3. The cavities of the rectangular molecules of 1 are arranged into infinite strands so that parallel channels occur in the crystal. The molecules of 2 and 3 all pack parallel in the crystals.  相似文献   

14.
A novel dinuclear cis-dioxomolybdenum(VI) complex [{MoO2(Bz2endtc)}2] coordinated with a quadradentate dithiocarbamate (Bz2endtc2−: ((2-(dithiocarboxybenzylamino)ethyl)benzylamino)-methanedithioate(2−)) has been synthesised. The structural features of [{MoO2(Bz2endtc)}2] have been elucidated by X-ray crystal analysis, elemental analysis and 13C NMR, IR and FAB+ mass spectroscopy: two almost identical cis-dioxomolybdenum(VI) centres are bridged by the two Bz2endtc2− ligands and each molybdenum(VI) centre has a distorted octahedral geometry with four sulphur atoms and two terminal oxo ligands lying in a cis position to each other. There is unlikely to be electronic interaction between the two cis-dioxomolybdenum(VI) centres in [{MoO2(Bz2endtc)}2] because the MoMo distance is long (=7.337 Å). In the [{MoO2(Bz2endtc)}2]/PPh3 system, the oxygen atom transfer reaction (Eq. (A)) occurs to give a tetranuclear oxomolybdenum(VI,V) complex formulated as [MoO2(Bz2endtc)2Mo2O3(Bz2endtc)2MoO2] which has one μ-oxomolybdenum(V) moiety.
(A)  相似文献   

15.
The synthesis of the X-ray structurally characterized square-planar [Ni(2,2,3-tet)](ClO4)2 (2) from the [Ni(2,2,3-tet)(NH3)(H2O)]Cl2 · 1/2EtOH · H2O (1), was based on their inter-conversion. The two sets of trans Ni-N bonds display similar to each other lengths (1.900 & 1.910 and 1.996 & 1.966 Å). The relaxation times (T1,2) of water protons and NMR experiments indicate relatively slow octahedral-sq-planar equilibrium, while in the aqueous solutions of 1, the sq-planar species appear to display a structure analogous to 2 in solution. The square planar geometry, the hydrophilicity of the complex and the asymmetry of the ligand generate the conditions for catalytic site formation.  相似文献   

16.
The kinetics of O2 binding to a vacant coordination site on the cobalt(II) ion have been determined, revealing a radical-like character for the reaction. Reversible oxygenation of Co(II) cyclidenes (C4, C5, C6, C8, C12-bridged and unbridged) was studied by a cryogenic stopped-flow method. In the presence of axial base, kinetic parameters are insensitive to the nature of the solvent, and negative entropies of activation suggest that dissociation of a solvent molecule is not the rate-determining step for the dioxygen binding process. This is in contrast to the behavior of previously studied Co(II) complexes. A very low activation energy (1–4 kcal mol−1), typical of diffusion controlled processes, was found for dioxygen binding. The binding rate constants for the highest affinity complexes (108 M−1 s−1) are comparable to the values for natural dioxygen carriers. The size of the lacuna primarily affects the dioxygen binding rates, while the axial bases influence the dioxygen dissociation rates.  相似文献   

17.
We report here the synthesis, characterization and kinetic studies of cis-[RuCl2(cyclen)]+ in aqueous solution, where cyclen is the macrocyclic ligand 1,4,7,10-tetraazacyclododecane. The complex releases one Cl producing cis-[RuCl(OH)(cyclen)]+ in aqueous solution at pH 4.60. The product of this reaction was characterized by Ultraviolet-Visible (UV-Vis) spectrum in comparison to the synthesized cis-[RuCl(OH)(cyclen)](BF4)·2H2O. The electrochemical data showed that Epc of the Ru(III/II) peak increases as the macrocycle ring size decreases and also when the trans conformation is changed to cis. The chloride affinity of Ru(III) depends on the macrocycle ring size since cis-[RuCl2(cyclam)]+ (cyclam=1,4,8,11-tetraazacyclotetradecane) does not release chloride for at least 12 h. The overall effect between cyclam and cyclen reflects the fact that the electron involved in the reduction enters a nonbonding π-d orbital and its energy is affected by the macrocyclic ligand.  相似文献   

18.
Conformations in solution of several diamagnetic nickel(II) complexes of macrocyclic tetraaza ligands are elucidated using proton NMR. There are six possible configurational isomers of planar [Ni(13aneN4)]2+ (13aneN4 = 1,4,7,10-tetraazacyclotridecane due to the orientation of the N---H protons above or below the plane of the macrocyle. Using NMR it is shown that in aqueous solution the [Ni(13aneN4)]2+ complex has the R,S,R,S or trans-II configuration. A single-crystal X-ray study demonstrates the same configuration of the nitrogen atoms in the complex [Ni(13aneN4)]ZnCl4. In the case of the 14-membered ring macrocyle cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane), previous NMR studies revealed the presence, in aqueous solution, of the previously unobserved trans-I or R,S,R,S isomer, whose spectrum is examined in greater detail here. Solution structures of nickel(II) complexes of bicyclam (1,5,8,12-tetraazabicyclo[10.2.2]hexadecane) and dachden (N, N′-bis(2-aminoethyl)-1,4-diazacycloheptane) are also reported.  相似文献   

19.
The coordination capability of the octaaza 24-membered (L1) and the tetraoxotetraaza 28-membered (L2) macrocycle ligands - with different sizes, nature and number of the donor atoms - has been investigated with nitrate and perchlorate Cd(II) salts. The complexes were prepared in 1:1 and 2:1 Cd:L molar ratio. The characterization by elemental analysis, IR, LSI mass spectrometry, conductivity measurements and 1H NMR spectroscopy, together with the crystal structure of the complexes [CdL1](NO3)2 · 0.5H2O, [CdL1](ClO4)2 and [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O confirms the formation of mononuclear complexes in all cases. The [CdL1](NO3)2 · 0.5H2O and [CdL1](ClO4)2 present a mononuclear endomacrocyclic structure with the metal ion coordinated by the eight donor nitrogen atoms from the macrocyclic backbone in a square antiprism geometry. The complex [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O is also mononuclear, but the cadmium ion is in an octahedral environment coordinated by four amine nitrogen atoms from the macrocyclic framework and two nitrogen atoms from two acetonitrile molecules. The ether oxygen atoms from the ligand are not coordinated.  相似文献   

20.
Two novel bolaamphiphile based dicarboxylic ligands L1H2 and L2H2 are synthesized by desymmetrizing aromatic anhydrides. The corresponding Cu(II) complexes [Cu(L1) · EtOH]2 (1), [Cu(L2) · (CH3CN)]2 (2) are synthesized and characterized. The crystal structure obtained for (1) and (2) indicates that they are new class of tetralactone type macrocyclic Cu(II) chelate complexes with paddle wheel Cu2-acetate cage structure. The 1:1, Cu(II) and ligand ratio leads into formation of a novel binuclear Cu(II) tetracarboxylate complexes. The macrocyclic chelate ring size in compounds 1 and 2 was altered from [15] membered to [19] membered by introducing phthalyl and diphenyl head groups as discussed in detail. The single crystal X-ray structure shows the Cu(II)?Cu(II) distance 2.613(13) Å for 1 and 2.626(13) Å for 2, the corresponding room temperature EPR spectra recorded for powdered polycrystalline samples indicate the existence of Cu(II)?Cu(II) dimeric system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号