首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One lead(II) coordination polymer, {[Pb(fum)(phen)]·2H2O}n (fum = fumarate, phen = 1,10-phenanthroline), was synthesized through the self-assembly of the lead(II) ion with the mixed fum and phen ligands and characterized by FT-IR spectroscopy, elemental analysis, thermogravimetric analysis, X-ray analysis and solid state photoluminescence spectrum. The compound shows a center-symmetrical dinuclear-based 2D architecture and further assembles into porous 3D supramolecular framework with 1D channel via interlayer π-π stacking interactions. The six-coordinated lead atoms in the complex show hemidirected geometry. The compound exhibits photoluminescence with the maximum emission located in UV region.  相似文献   

2.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

3.
Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)2Cu(μ-N,O:O′-apm)2(H2O)Cu(apm)2(H2O)] · 5H2O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) Å, b = 15.6840(1) Å, c = 21.5280(1) Å, α = 93.02(1)°, β = 93.21(1)°, γ = 92.66(1)° and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and β-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure.  相似文献   

4.
Synthesis, physical properties and X-ray structure of a hydrated tetranuclear copper(II) complex [Cu4(μ-diph)2(μ-H2O)2(O2CCH3)4(H2O)2]·4H2O with N,N′-bis(picolinoyl)hydrazine (H2diph) are reported. The centrosymmetric complex has two types of copper(II) centres with distorted square-pyramidal N2O3 coordination spheres. The dinucleating trans planar diph2− ligands are parallel to each other and act as N2O-donor to one metal centre and N2-donor to the other metal centre. The complex has a rectangular {Cu4(μ-N-N)2(μ-OH2)2} core with Cu···Cu distances as 4.834(1) and 3.762(1) Å. Solid state as well as solution electronic spectra show several transitions in the wavelength range 700-280 nm. The room temperature (298 K) solid state magnetic moment is 3.55 μB. The powder EPR spectra at 298 and 130 K are very similar and axial (g = 2.25 and g = 2.08) in character.  相似文献   

5.
New copper(II) complexes of general empirical formula, [Cu(NNS)X] (NNS = anionic forms of the 2-acetylpyrazine Schiff bases of S-methyl- and S-benzyldithiocarbazate, Hapsme and Hapsbz) and X = Cl, Br, NCS and NO3 have been synthesized and characterized. X-ray crystal structures of the free ligand, Hapsbz and the complexes, [Cu(apsbz)(NO3)], [Cu(apsme)(NCS)]2 and [Cu(apsme)Cl]2 have been determined. In the solid state, the Schiff base, Hapsbz remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. X-ray diffraction shows that the [Cu(apsbz)(NO3)] complex is a novel coordination polymer in which one of the nitrogen atoms of the pyrazine ring bridges two adjacent copper(II) ions. The Schiff base is coordinated to the copper(II) ion in its iminothiolate form via the thiolate sulfur atom, the azomethine nitrogen atom and one of the pyrazine nitrogen atoms, the overall geometry of each copper atom in the polymer being close to a square-pyramid. The complexes, [Cu(apsme)X]2 (X = NCS, Cl) are dimers in which each copper atom adopts a five-coordinate near square-pyramidal geometry with an N3S2 coordination environment. The Schiff base coordinates as a uninegatively charged tridentate ligand chelating via the pyridine and azomethine nitrogen atoms and the thiolate sulfur atoms. A nitrogen atom of a unidentate thiocayanate or chloride ligand and a bridging sulfur atom from a second ligand completes the coordination sphere. Room temperature μeff values for the complexes in the solid state are in the range 1.70-2.0 μB typical of uncoupled or weakly coupled Cu(II) centres. Variable temperature susceptibility studies show that the chain complex displays weak ferromagnetic coupling across the pyrazine bridges, while the S-bridged dinuclear compounds display either weak ferromagnetic or weak antiferromagnetic coupling that relates to subtle bridging geometry differences. EPR studies of frozen DMF solutions give rather similar g and ACu values for all compounds indicative of Cu(dx2-y2) ground state orbitals on the Cu centers.  相似文献   

6.
The reactions of [Ru(PPh3)3Cl2], N-(benzoyl)-N′-(5-R-salicylidene)hydrazines (H2bhsR, R = H, OCH3, Cl, Br and NO2) and triethylamine (1:1:2 mole ratio) in methanol afford mononuclear ruthenium(III) complexes having the general formula trans-[Ru(bhsR)(PPh3)2Cl]. In the case of R = H, a dinuclear ruthenium(III) complex of formula [Ru2(μ-OCH3)2(bhsH)2(PPh3)2] has been isolated as a minor product. The complexes are characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. The crystal structures of the dinuclear complex and two mononuclear complexes have been determined. In the dinuclear complex, each metal centre is in distorted octahedral NO4P coordination sphere constituted by the two bridging methoxide groups, one PPh3 molecule and the meridionally spanning phenolate-O, imine-N and amide-O donor bhsH2−. The terminal PPh3 ligands are trans to each other. In the mononuclear complexes, bhsR2− and the chlorine atom form an NO2Cl square-plane around the metal centre and the P-atoms of the two PPh3 molecules occupy the remaining two axial sites to complete a distorted octahedral NO2ClP2 coordination sphere. All the complexes display ligand-to-metal charge transfer bands in the visible region of the electronic spectra. The cryomagnetic measurements reveal the antiferromagnetic character of the diruthenium(III) complex. The low-spin mononuclear ruthenium(III) complexes as well as the diruthenium(III) complex display rhombic EPR spectra in frozen solutions. All the complexes are redox active in CH2Cl2 solutions. Two successive metal centred oxidations at 0.69 and 1.20 V (versus Ag/AgCl) are observed for the dinuclear complex. The mononuclear complexes display a metal centred reduction in the potential range −0.53 to −0.27 V. The trend in these potential values reflects the polar effect of the substituents on the salicylidene moiety of the tridentate ligand.  相似文献   

7.
The reaction of triethylenetetramine, salicylaldehyde and benzaldehyde in 1:2:1 mole ratio in methanol at room temperature affords a novel μ-bis(tridentate) ligand H2L′ through the formation of an imidazolidine ring within the parent hexadentate precursor in a two step reaction. The ligand H2L′ reacts with Fe(ClO4)2 · 6H2O in aqueous methanol in the presence of triethylamine to form the mononuclear [FeIIIL](ClO4) complex, (where L2− is the anion of the parent hexadentate H2saltrien ligand) after the cleavage of the imidazolidine ring. The mononuclear complex has a structure with an N4O2 donor atom set of the hexadentate ligand forming a distorted octahedral coordination geometry around the metal atom as established from a crystal structure determination. The Fe-N(imine) distances are 1.934(10) and 1.948(9) Å, Fe-N(amine) distances are 2.062(8) and 2.076(9) Å and Fe-O(phenol) distances are 1.864(8) and 1.872(7) Å. The terminal oxygen donor atoms occupy cis positions and the remaining four nitrogen atoms (two cis amine and two trans imine) complete the coordination sphere. The mononuclear complex has a magnetic moment 1.89 μB corresponding to the low-spin 3d5 configuration. The UV-Vis spectrum of the end product, after the imidazolidine ring hydrolysis, is different from the spectrum of the initial reaction mixture containing the μ-bis(tridentate) ligand H2L′.  相似文献   

8.
To investigate the effect of organic anions on the coordination frameworks, we synthesized three new complexes, namely, Zn(DPA)(bpimb)0.5(H2O) (1), Zn(BDC)(bpimb)0.5 (2) and Zn2(SDBA)2(bpimb)·H2O (3) (H2DPA = diphenic acid; H2BDC = isophthalic acid; H2SDBA = 4,4′-dicarboxybiphenylsulfone), which were obtained by the reactions of 1,4-bis((2-(pyridin-2-yl)-1H-imidazol-1-yl)methyl)benzene (bpimb) as main ligand, and several aromatic polycarboxylate as organic anions with Zn(NO3)2·6H2O. Single-crystal structure analysis shows that complex 1 is a one-dimensional chain structure, which is further interlinked into a higher-dimensional supramolecular framework by hydrogen-bonding interactions. In 2, BDC bridge Zn(II) atoms to give dimeric units, which are further linked by bpimb ligands to form sql nets. In 3, SDBA ligands and bpimb ligands connect Zn(II) ions into catenane-like two-dimensional layers. These catenane-like two-dimensional layers stack in an ABAB fashion to form a 3D supramolecular network. The distinct structures indicate three kinds of carboxylic ligands with different lengths and angles play fundamental roles in the formation of the final products. In addition, the luminescence measurements reveal that three complexes exhibit strong fluorescent emissions in the solid state at room temperature.  相似文献   

9.
The new aryl phosphinites PPh2OR (R = 2,4,6-Me3C6H2, 1; R = 2,6-Ph2C6H3, 2) have been prepared from chlorodiphenylphosphine and the corresponding phenols. In these ligands, the ortho-positions of the aromatic phosphite function are blocked by methyl and phenyl substituents, which allows coordination to metal centres without ortho-metallation. Thus, reaction with [PdCl2(cod)] leads to the complexes trans-[PdCl2(PPh2OR)2] (R = 2,4,6-Me3C6H2, 3; R = 2,6-Ph2C6H3, 4), while the reaction with [Rh2(CO)4Cl2] gives trans-[Rh(CO)Cl(PPh2OR)2] (R = 2,4,6-Me3C6H2, 5; R = 2,6-Ph2C6H3, 6). The single-crystal X-ray structure analyses of 3 and 5 confirm the trans-coordination of the new ligands in these square-planar complexes.  相似文献   

10.
A 1D-coordination polymer [{Mn3(C6H5COO)6(BPNO)2(MeOH)2}(MeOH)2]n (1) having benzoate as the anionic ligand and 4,4′-bipyridyl-N,N′-dioxide (BPNO) as bridging ligand is synthesized by reacting benzoic acid with manganese(II) acetate tetrahydrate followed by reaction with 4,4′-bipyridyl-N N′-dioxide. The bridging bidentate BPNO ligands in this coordination polymer along with the benzoate bridges hold the repeated units. The chain like structure in one dimension by benzoate bridges are connected to each other through the μ321 bridges of BPNO ligands. This coordination polymer can be transformed to a molecular complex [Mn(H2O)6](C6H5COO)2.4BPNO (2). In this complex the BPNO remains outside the coordination sphere but they are hydrogen bonded to water molecules to form self assembled structure. The reaction of 3,5-pyrazoledicarboxylic acid (L1H2) and BPNO with manganese(II) acetate or zinc(II) acetate led to molecular complexes with composition [M2(L1)2(H2O)6].BPNO·xH2O {where M = Mn(II) (3), Zn(II)(4)}. These molecular complexes of BPNO are characterised by X-ray crystallography. The complexes 3-4 are binuclear carboxylate complexes having M2O2 core formed from carboxylate ligands with two metal ions.  相似文献   

11.
Yue Wang 《Inorganica chimica acta》2005,358(12):3407-3416
New ternary transition metal complexes of formulations [Co(bpa)(p-HB)2](bpa = 2,2′-bipyridylamine, p-HB = p-hydroxybenzenecarboxylic acid) (1), [Ni(bpa)(p-HB)(H2O)2]+(NO3) · H2O (2), , [Cu(bpa)(p-HB)Cl] (4) and [Zn(bpa)(p-HB)2]2 · 0.5H2O (5) are prepared, their structural features are characterized by crystal structural studies, and their DNA binding propensity has been evaluated by fluorescence method. The molecular structure of complex 1 shows the six coordinate octahedral geometry with one bpa and two p-HB ligands, complex 2 is the cationic complex and has the six coordinate octahedral structure with one bpa, one p-HB and two aqua ligands, complex 3 is also the cationic complex of octahedral coordination with two bpa and one p-HB ligands, complex 4 is five coordinate distorted square pyramidal with one bpa, one p-HB and chloride ligands and complex 5 has the distorted octahedral coordination with two p-HB and one bpa ligands. In all of the complexes, both bpa and p-HB act as the bidentate N and O-donor ligands, respectively. The intermolecular H-bond networks, together with π-π interaction in their solid state are also described. The complexes show the competitive inhibition of ethidium binding to DNA, and the DNA binding propensity can be reflected as the relative order: 3 > 2 > 1 > 5 > 4, in which the cationic charged Ni(II) complexes 2 and 3 show the most effective inhibition ability.  相似文献   

12.
The syntheses, structures and magnetic properties of five new manganese (III) cyclam complexes, trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O, trans-[Mn(cyclam)I2]I, trans-[Mn(cyclam)(ONO)2]ClO4, trans-[Mn(cyclam)(OClO3)2]ClO4 and trans-[Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2, are reported. Cyclam is the tetradentate amine ligand 1,4,8,11-tetraazacyclotetradecane. The complexes all exhibit pronounced tetragonal elongation of the coordination octahedron with the four cyclam nitrogens occupying the four equatorial positions. The magnetic properties are consistent with the formulation of the complexes as high-spin d4 systems. trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O is shown to be a convenient starting material for the syntheses of trans cyclam complexes. [Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2 exhibits extremely short intermolecular hydrogen bonds resulting in a pseudo-chain structure. The tilt of the axial ligands with respect to the equatorial plane containing the manganese and the cyclam nitrogen atoms is discussed.  相似文献   

13.
A novel Ni(II)-nitronyl nitroxide-substituted thiazole complex, Ni(NIT2-thz)3(ClO4)2 (NIT2-thz = 2-(2′-thiazole)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group P21c. The metal coordination sphere is fully occupied by three chelating nitroxide ligands, showing a distorted octahedral geometry. The complex molecules were connected as 1-D chain structure by the intermolecular interaction. Magnetic studies show that antiferromagnetic couplings occurred between the nickel(II) ion and the organic radicals, and ferromagnetic between the adjacent molecules.  相似文献   

14.
The synthesis, structure and spectroscopic properties of novel palladium(II) chloro complexes with a series of (aminoalkyloxymethyl)dimethylphosphine oxides (AOPO) are reported. The complexes with general formula PdCl2(N,N′-AOPO2) were obtained by the reaction of PdCl2(CH3CN)2 with the ligands in dry ethanol. The crystal structure of the trans-bis[2-(dimethylphosphinoylmethoxy-1,1-dimethylethylamine)]palladium(II) dichloride has been determined from single-crystal X-ray diffraction data. The compound crystallizes in monoclinic crystal system with P21/n space group. The square-planar coordination sphere of palladium consists of two N atoms from two aminoalkyldimethylphosphine ligands and two Cl atoms in trans-arrangement. The AOPO ligand has monodentate coordination through the NH2 group. The Pd-N and Pd-Cl distances are 2.0610(14) and 2.3225(4) Å, respectively. The preparation of complexes with a composition PdCl2(AOPO)2 in chloroform solution are also reported.  相似文献   

15.
Cobalt involvement in chemical and metallobiological processes entails largely unknown reactivity pathways with a variety of ligands. Such ligands include phosphonate and carboxylate-containing metal ion binders. In an attempt to investigate the nature and properties of species arising from aqueous interactions between Co(II) and N,N-bis(phosphonomethyl)-glycine (H5NTA2P), reactions between the two led to an assembly of species in (NH4)4[Co(H2O)6][(H2O)2Co(HNTA2P)Co(NH3)2(H2O)3]2[Co(NTA2P)(H2O)2]2 · 10H2O · 1.36CH3CH2OH (1) at pH ∼ 5.5. The analytical, spectroscopic and X-ray data on 1 reveal mononuclear and dinuclear complexes of Co(II) surrounded by oxygens, belonging to terminal carboxylates, phosphonates and bound water molecules, and nitrogen atoms from coordinated ammonia and HxNTA2Pq (x = 1, q = 4; x = 0, q = 5) ligands. Worth noting is the variable protonation state of the bound diphosphonate ligand and its ability to bridge two Co(II) centers with ostensibly differing coordination spheres. The assembly of three Co(II) species of variable nuclearity and composition attests to the importance of pH-specific conditions, under which “capturing” of more than one species can be achieved for a given Co(II):H5NTA2P stoichiometry in the presence of ammonia. Collectively, 1 provides a rare glimpse of a “slice” of the aqueous speciation of the binary Co(II)-H5NTA2P system, while its lattice composition projects key structural features in Co(II)-carboxyphosphonate materials.  相似文献   

16.
The synthesis and crystal structure of two new complexes (Zn and Mn) containing tetrazolyl ligands are described. In situ [2+3] cycloaddition reactions of fipronil, (fipronil = (±)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile) with sodium azide in the presence of ZnCl2 or MnCl2 as a Lewis acid (Demko-Sharpless tetrazole synthesis method) under hydrothermal (solvothermal) reaction conditions gave [Zn(L)2](H2O)2] · H2O, 1 and [Mn(L)2](H2O)2] · H2O, 2, (HL = (±)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-tetrazole). The central metals in both complexes are six coordinated, which connected by two water molecules, two nitrogen atoms from different tetrazolyl groups and two nitrogen atoms from pyrazolyl rings respectively. Photoluminescence studies reveal that both title complexes exhibit strong blue fluorescent emissions at λmax = 383 nm for 1 and 411 nm for 2 respectively in the solid state at room temperature.  相似文献   

17.
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing α,α-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)]2 (ONNO2− = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)]2, but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis.  相似文献   

18.
In [PtX(PPh3)3]+ complexes (X = F, Cl, Br, I, AcO, NO3, NO2, H, Me) the mutual cis and trans influences of the PPh3 groups can be considered constants in the first place, therefore the one bond Pt-P coupling constants of P(cis) and P(trans) reflect the cis and trans influences of X. The compounds [PtBr(PPh3)3](BF4) (2), [PtI(PPh3)3](BF4) (3), [Pt(AcO)(PPh3)3](BF4) (4), [Pt(NO3)(PPh3)3](BF4) (5), and the two isomers [Pt(NO2-O)(PPh3)3](BF4) (6a) and [Pt(NO2-N)(PPh3)3](BF4) (6b) have been newly synthesised and the crystal structures of 2 and 4·CH2Cl2·0.25C3H6O have been determined. From the 1JPtP values of all compounds we have deduced the series: I > Br > Cl > NO3 > ONO > F > AcO > NO2 > H > Me (cis influence) and Me > H > NO2 > AcO > I > ONO > Br > Cl > F > NO3 (trans influence). These sequences are like those obtained for the (neutral) cis- and trans-[PtClX(PPh3)2] derivatives, showing that there is no dependence on the charge of the complexes. On the contrary, the weights of both influences, relative to those of X = Cl, were found to depend on the charge and nature of the complex.  相似文献   

19.
A di-N-functionalized 14-membered tetraaza macrocycle, [H4L3](ClO4)2 (L3 = 1,8-bis(2-carboxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane), has been synthesized by acid hydrolysis of 1,8-bis(2-cyanoethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L2). The copper(II) complexes [CuL2](ClO4)2 and [Cu(H2L3)](ClO4)2 were prepared and characterized. The complex [Cu(H2L3)]2+ readily reacts with methanol to yield [CuL4]2+ (L4 = 1,8-bis(2-carbomethoxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane). The N-CH2CH2COOH groups of [Cu(H2L3)](ClO4)2 are not coordinated to the metal ion in the solid state but are involved in coordination in various non-aqueous solvents or in aqueous solutions of pH ? 1.0. Interestingly, [CuL4](ClO4)2 exists as two stable structural isomers, 1 (the pendant ester groups are not involved in coordination) and 2 (one of the two ester groups is coordinated to the metal ion), in the solid state; the two isomers can be prepared selectively by controlling ionic strength of a methanol solution of the complex. Crystal structures and coordination behaviors of the two isomers are described. The di-N-cyanoethylated macrocyclic complex [CuL2](ClO4)2 is rapidly decomposed in 0.1 M NaOH solution even at room temperature. On the other hand, [Cu(H2L3)](ClO4)2 and [CuL4](ClO4)2 are quite inert against decomposition under similar basic conditions. In acidic or basic aqueous solutions, [CuL4]2+ is hydrolyzed to [Cu(H2L3)]2+ or [CuL3].  相似文献   

20.
Two 1D organic-inorganic coordination polymers, [Cd(3-pmpmd)(CH3CN)2(H2O)2]n · 2n(ClO4)2 (1) and [Zn(3-pmpmd)1.5(H2O)2]n · 2n(ClO4)2 · nCH3CN (2), were obtained from M(ClO4)2 (M = Cd, Zn) and the semi-flexible 3,3′-N-donor bis-pyridyl ligand 3-pmpmd: 1 has an 1D zigzag framework with 3-pmpmd in the ZT-mode (anti, trans-) conformation, while 2 has an 1D rod and loop network with 3-pmpmd in both ZT- and ZC-mode (anti, cis-) conformations. Results showed that the metal ions could influence the coordination mode of a semi-flexible bis-pyridyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号