首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The crystalline compounds [LnCl2(L)(thf)2] [Ln = Ce (1), Tb (2), Yb (3)], [NdI2(L)(thf)2] (4), [LnCl(L′)2] [Ln = Tb (5), Yb (6) (a known compound)] and [YbCl(L′′)(μ-Cl)2Li(OEt2)2] (7) have been prepared [L = {N(C6H3Pri2-2,6)C(H)}2CPh, L′ = {N(SiMe3)C(Ph)}2CH, L′′ = {N(SiMe3)C(C6H4Ph-4)}2CH]. The X-ray molecular structures of 2-7 have been established; in each, the monoanionic ligand L, L′ or L′′ is N,N′-chelating and essentially π-delocalised. Each of 1-7 was prepared from the appropriate LnCl3, or for 4 [NdI3(thf)2], and an equivalent portion of the appropriate alkali metal [Li for 7, Na for 2, 3 and 5, or K for 1, 4 and 6] β-diiminate in thf; the isolation of exclusively 5 and 6 (rather than the L′ analogues of 2 or 3) is noteworthy, as is the structure of 7 which has no precedent in Group 3 or 4f metal β-diiminato chemistry.  相似文献   

2.
The distorted square-planar complexes [Pd(PNHP)Cl]Cl (1) (PNHP = bis[2-(diphenylphosphino)ethyl]amine), [M(P3)Cl]Cl [P3 = bis[2-(diphenylphosphino)ethyl]phenylphosphine; M = Pd (2), Pt (3)] and [Pt(NP3)Cl]Cl (5) (NP3 = tris[2-(diphenylphosphino)ethyl]amine), coexisting in the later case with a square-pyramidal arrangement, react with one equivalent of CuCl to give the mononuclear heteroionic systems [M(L)Cl](CuCl2) [L = PNHP, M = Pd (1a); L = P3, M = Pd (2a), Pt (3a); L = NP3, M = Pt (5a)]. The crystal structure of 3a confirms that Pt(II) retains the distorted square-planar geometry of 3 in the cation with P3 acting as tridentate chelating ligand, the central P atom being trans to one chloride. The counter anion is a nearly linear dichlorocuprate(I) ion. However, the five-coordinate complexes [Pd(NP3)Cl]Cl (4), [M(PP3)Cl]Cl (M = Pd (6), Pt (7); PP3 = tris[2-(diphenylphosphino)ethyl] phosphine) containing three fused five-membered chelate rings undergo a ring-opening by interaction with one (4, 6, 7) and two (6, 7) equivalents of CuCl with formation of neutral MCu(L)Cl3 [L = NP3, M = Pd (4a); L = PP3, M = Pd (6a), Pt (7a)] and ionic [MCu(PP3)Cl2](CuCl2) [M = Pd (6b), Pt (7b)] compounds, respectively. The heteronuclear systems were shown by 31P NMR to have structures where the phosphines are acting as tridentate chelating ligands to M(II) and monodentate bridging to Cu(I). Further additions of CuCl to the neutral species 6a and 7a in a 1:1 ratio resulted in the achievement of the ionic complexes 6b and 7b with ions as counter anions. It was demonstrated that the formation of heterobimetallic or just mononuclear mixed salt complexes was clearly influenced by the polyphosphine arrangement with the tripodal ligands giving the former compounds. However, complexes [M(NP3)Cl]Cl constitute one exception and the type of reaction undergone versus CuCl is a function of the d8 metal centre.  相似文献   

3.
The synthesis and structural characterization of two novel donor-functionalized terphenyl magnesium compounds, namely (Danip)2Mg (1) [Danip = 2,6-di(o-anisyl)phenyl] and [DinapOMg(THF)]2 (Dinap = 2,6-di(o-2-methoxynaphthyl)phenyl; DinapO = 2-(o-2-methoxynaphthyl)-6-(o-2-naphthoxide)phenyl) is reported. Compound 1 represents a first structurally authenticated bis terphenyl magnesium compound, while the molecular structure of dimeric tetrahydrofuran solvated 2 shows a five-coordinate magnesium atom stabilized by a partially demethylated dianionic mixed arylether/aryloxide terphenyl ligand (= DinapO).  相似文献   

4.
Diamido-supported rare earth metal amides with the general formula {(CH2SiMe2)[(2,6-iPr2C6H3)N]2}LnN(SiMe3)2(THF) [(Ln = Yb(1), Y(2), Dy(3), Sm (4), Nd (5)] were found to be highly efficient catalysts for the guanylation of both aromatic and heterocyclic amines under mild conditions. It is found that these catalysts are compatible with a wide range of substituents such as iPr, Me, and MeO having electron-donating property and substituents such as Cl, Br, and O2N having electron-withdrawing property on the aromatic rings of the aromatic or the heterocyclic amines. The methodology has also the advantages of easy preparation of the catalysts, quick conversion of the substrates to products, mild reaction conditions, and low catalyst loading.  相似文献   

5.
The reaction of dimeric precursor [Ir(CO)2Cl]2 with two molar equivalent of the pyridine-ester ligands (L) like methyl picolinate (a), ethyl picolinate (b), methyl nicotinate (c), ethyl nicotinate (d), methyl isonicotinate (e) and ethyl isonicotinate (f) affords the tetra coordinated neutral complexes of the type [Ir(CO)2ClL] (1a-f). The single crystal X-ray structure of 1d reveals that the Ir atom occupies the centre of an approximately square planar geometry with two CO groups cis- to each other. Intermolecular C-H?O and Ir?C interactions greatly stabilize the supramolecular structure of 1d in the solid state. The oxidative addition (OA) reactions of 1a-f with different electrophiles such as CH3I, C2H5I and I2 undergo decarbonylation of one CO group to generate the oxidized products of the type [Ir(CO)RClIL] where R = -CH3 (2a-f); -C2H5 (3a-f) and [Ir(CO)ClI2L] (4a-f). Kinetic study of the reaction of 1c-f with CH3I indicates a first order reaction which follow the order 1d > 1c > 1f > 1e. All the synthesized complexes were characterized by elemental analyses, IR, and multinuclear NMR spectroscopy.  相似文献   

6.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

7.
In the presence of sodium nitrite, the reaction of methyl anthranilate and 2-aminopyridine or o-aminobenzoic acid gives two triazenes, 1-[(2-carboxymethyl)benzene]-3-[2-pyridine]triazene (HL) and 1-[(2-carboxymethyl)benzene]-3-[o-aminobenzoic acid]triazene (H2L′), respectively. In the presence of Et3N, the reaction of Pt(PPh3)2Cl2 and HL or H2L′ produces two triazenido platinum(II) complexes, Pt(PPh3)2(L)Cl (1) and Pt(PPh3)2(L′) (2), respectively, which have been characterized by X-ray crystallography, 31P NMR spectra, UV-Vis spectra, emission spectra and cyclic voltammetry. When excited at 310 nm, complexes 1 and 2 show luminescence at 432 and 442 nm, respectively, which is consistent with the trend of the lowest-energy absorption wavelengths of 1 (376 nm) and 2 (379 nm). Complexes 1 and 2 exhibit one or two redox waves and follow the order 1 (0.97 V) → 2 (0.89 and 0.07 V), which is also in accordance with the trend of the lowest-energy absorption spectra of 1 (376 nm) and 2 (379 nm).  相似文献   

8.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

9.
Individual synthetic routes to heterobimetallic Ti(IV)-Ag(I) acetylides of type {[Ti](μ-σ,π-CCR1)2}AgCCR2 ([Ti] = (η5-C5H4SiMe3)2Ti: R1 = SiMe3: 6, R2 = SiMe3; 7, R2 = Ph. R1 = tBu: 8, R2 = SiMe3; 9, R2 = Ph. [Ti] = (η5-C5H5)2Ti): 10, R1 = tBu, R2 = SiMe3) including (i) the reaction of {[Ti](μ-σ, π-CCR1)2}AgNO3 ([Ti] = (η5-C5H4SiMe3)2Ti): 1, R1 = SiMe3; 2, R1 = tBu. [Ti] = (η5-C5H5)2Ti: 3, R1 = tBu) with LiCCR2 (4, R2 = SiMe3; 5, R2 = Ph) and (ii) treatment of [Ti](CCSiMe3)2 ([Ti] = (η5-C5H4SiMe3)2Ti) (11) with [AgCCR2] (12, R2 = SiMe3; 13, R2 = Ph) are described. The reactions of 1-3 with 4 or 5 appeared to be sensitive towards stoichiometry because an excess of 4 or 5 resulted in the formation of [(Ag(CCR2)2)Li(OEt2)]n (14) and [Ti](CCR1)2. Coordination polymer 14 is also accessible, when, for example, [AgCCSiMe3] (12) is treated with 1 eq. of LiCCSiMe3 (4) in diethyl ether.The titanium(IV)-silver(I) acetylides 6-10 are stable in the dark and at low temperature, while on exposure to light and on heating they decompose to give R2CC-CCR2 together with [Ti](CCR1)2 and elemental silver.Complexes 6-10 contain a mono-nuclear AgCCR2 entity stabilized by the chelate-bonded organometallic π-tweezer molecule [Ti](CCSiMe3)2, which was evinced by structure determination of 7 in the solid state. In 14 linear [Me3SiCC-Ag-CCSiMe3] units are connected by [Li(OEt2)]+ building blocks forming a coordination polymer.  相似文献   

10.
Neutral tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(L)] (Ln = Sc (1), Lu (2)) and cationic bis(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)2(L)(THF)]+[BPh4], (Ln = Sc (3), Lu (4)) that contain bis(2-methoxyethyl)(trimethylsilyl)amine (L = Me3SiN(CH2CH2OMe)2) as a neutral, tridentate ligand were synthesized and characterized by NMR spectroscopy. X-ray structural analysis was performed for the scandium complex 1 and exhibited a distorted octahedral coordination geometry with a facially arranged ligand at the neutral scandium center. NMR spectroscopy corroborated the coordination of the tertiary amine function of the ligand to the metal. Complexes 3 and 4 expand the still limited range of cationic rare-earth metal alkyl complexes with known neutral, multidentate ligands.  相似文献   

11.
[Rh(CO)2Cl]2 reacts with two mole equivalent of 2-acetylpyridine (a), 3-acetylpyridine (b) and 4-acetylpyridine (c) to afford chelate [Rh(CO)Cl(η2-N∩O)] (1a) and non-chelate [Rh(CO)2Cl(η1-N∼O)] (1b, 1c) complexes, where, N∩O = a, N∼O = b, c. Oxidative addition (OA) of 1a-1c with CH3I and C2H5I yields penta coordinate rhodium(III) complexes, [Rh(COR)ClI(η2-N∩O)] {R = -CH3 (2a); -C2H5 (3a)} and [Rh(COR)(CO)ClI(η1-N∼O)] {R = -CH3 (2b, 2c); -C2H5 (3b, 3c)}. Kinetic study for the reaction of 1a-1c with CH3I indicates a pseudo-first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester was evaluated at different initial CO pressures 5, 10 and 20 bar at ∼25 °C and higher turn over numbers (TON = 1581-1654) were obtained compared to commercial Monsanto’s species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature = 130 ± 1 °C, pressure = 15-32 bar, rpm = 450, time = 1 h and catalyst: substrate = 1: 1900.  相似文献   

12.
The synthesis and structural characterization of the two novel unsolvated heteroleptic ytterbium compounds DanipYb(TpMe,Me)Cl (1) and DanipYb(TpMe,Me)CH2SiMe3 (2) by simple salt metathesis reaction is reported [Danip = 2,6-di(o-anisol)phenyl); TpMe,Me = hydrotris(3,5-dimethyl-pyrazolyl)borate]. In the molecular structure of 2 a flexible bonding mode of the donor-functionalized terphenylic ligand is observed.  相似文献   

13.
A family of neutral and solvent-free bis(amidinate) rare earth metal amide complexes with a general formula [RC(N-2,6-Me2C6H3)2]2LnN(SiMe3)2 (R = phenyl (Ph), Ln = Y (1), Nd (2); R = cyclohexyl (Cy), Ln = Y (3), Nd (4)) were synthesized in high yields by one-pot salt metathesis reaction of anhydrous LnCl3, amidinate lithium salt [RC(N-2,6-Me2C6H3)2]Li, and NaN(SiMe3)2 in THF at room temperature. Single crystal structural determination of complexes 1, 2 and 4 revealed that the central metal adopts distorted pyramidal geometry. In the presence of 1 equivalent of iPr-OH, all these complexes were active for l-lactide polymerization in toluene at 70 °C to give high molecular weight (Mn > 104) polymers.  相似文献   

14.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

15.
The crystal structures of [Cr(NO)(NH3)5](PF6)2 (red) and [Cr(NO)(NH3)5]Cl(PF6) (brown) have been determined. The [Cr(NO)(NH3)5]2+(A) complex cations in these compounds have a slightly distorted octahedral geometry with a strictly linear Cr-N-O arrangement (from symmetry). The short interatomic distances (2.399 Å × 4) between the O (nitrosyl) and H (ammonia in adjacent complex cations) atoms in A(PF6)2 indicate the existence of hydrogen bonds, while the interatomic distances (3.258 Å × 8) between those in ACl(PF6) are much longer, and the hydrogen bonds should be weak in spite of the presence of the smaller counter anion of chloride ion in ACl(PF6). Comparisons of the five crystal structures of A(PF6)2, ACl2, ACl(ClO4), ACl(PF6), and A(ClO4)2 have led to the conclusion that the existence of the strong hydrogen bonds gives red crystals of A(PF6)2, while the absence of hydrogen bonds results in the formation of green crystals of A(ClO4)2 (O ? H, 3.595 Å × 2). The color change of the crystals (from red to green) with the change of outer sphere anions is attributed to the change of the strength of the hydrogen bonding between the complex cations.  相似文献   

16.
Schiff bases L1-L5 {N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L1), 3-methyl-N-[1-pyridine-2-ylmethylidene]pyridine-2-amine (L2), 3-methyl-N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L3), 4-methyl-N-[1-pyridine-2-ylmethylidene]pyridine-2-amine (L4), 4-methyl-N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L5)} were synthesized and on reaction with Co(NO3)2·6H2O, complexes having the molecular formulae [Co(L1O)2]NO3 (1), [Co(L2O)2]NO3·xH2O (2a, x = 2; 2b, x = 3), [Co(L3O)2]NO3 (3), [Co(L4O)2]NO3·4H2O (4), [Co(L5O)2]NO3 (5) were isolated from the respective imines. The salt [Co(L2O)2]PF6 (2c) was obtained by treating 2 with KPF6. Complexes 1-5 were formed as a result of addition of a water molecule across the imine function and the resultant alcohol binds in its deprotonated form. The alcoholate ion remained bound in a facial tridentate fashion to the low-spin cobalt(III). X-ray crystal structure determination confirmed the presence of trans-trans-trans-NANPO (A = aminopyridyl and P = pyridyl) disposition in 2a and cis-cis-trans-NANPO in 2b, 2c and 4. Water dimers in 2a, 2b, 4 and water-nitrate ion network in 2a were other notable features.  相似文献   

17.
Herein, we describe the synthesis of N,N′,S donor ligands 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-3-(methythio)propyl)-4-methoxy-3,5-dimethylpyridine (L1) and 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-2-(methythio)ethyl)-4-methoxy-3,5-dimethylpyridine (L2). Cu(I) complexes were prepared by reacting L1 or L2 with [Cu(CH3CN)4]BF4 or CuCl. The coordination behavior of the thioether arm of the ligands was found to determine the nuclearity of the resulting complexes, in which [Cu(L1)PPh3]BF4 (1) is polynuclear, [Cu(L2)PPh3]BF4 (2) is mononuclear, while [Cu(L1)]2(BF4)2 (3), [Cu(L2)CH3CN]2(BF4)2 (4), and [Cu(L1)Cl]2 (5) are dinuclear. In the dimeric complex [Cu(L2)Cl]2 (6), the sulfur atoms are not metal-bound. Rather, the two bridging chloride ions link the two copper centers. Compounds 4-6 are luminescent in the solid state, and exhibit emission bands centered at 490 nm (4), 544 nm (5), and 562 nm (6), respectively. Their excitation spectra display bands at 280 nm and 380 nm. According to DFT calculations, the HOMO is distributed partially over the metal centers and partially over the chloride anions (5 and 6) or the sulfur atoms (4) of the ligands, while the LUMO is a π∗ antibonding pyridine orbital. This suggests that the emission properties are derived from metal-to-ligand charge-transfer (MLCT), halide-to-ligand charge-transfer (XLCT), and ligand-to-ligand charge-transfer (LLCT) excited states.  相似文献   

18.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

19.
The reaction of 1-(2-hydroxyethyl)-3,5-dimethylpyrazole (HL) with anhydrous metal(III) halides (M = Al, Ga, In and Cr) results in the isolation of four novel dinuclear complexes [Al(μ-L)Cl2]2 (1), [Ga(μ-L)Cl2]2 (2), [In(μ-L)Br2(H2O)]2·2thf (3) and [Cr(μ-L)Cl2(H2O)]2·1.5thf (4) in good yields. The new complexes have been characterized with the aid of analytical and spectroscopic studies. A single crystal X-ray structure determination in each case confirms the dimeric structure for all the complexes in the solid-state. The pyrazole ethanol ligand binds to the metal through both pyrazole nitrogen and bridging alkoxide oxygen terminals with the formation of a central M2O2 core involving the ethoxide anion. The metal(III) center is pentacoordinated in compounds 1 and 2, while it is hexacoordinated in compounds 3 and 4.  相似文献   

20.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号