首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

2.
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4-dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu2(dipn)2(N3)2] (1) and [Cu2(dipn)2(OAc)2] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4-dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = −2.10 cm−1) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm−1, J′ = −1.08 cm−1).  相似文献   

3.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

4.
A 2D grid-like copper(II) complex [Cu(N3)2(pyz)](pyz = pyrazine) (1) has been synthesized and characterized by single crystal X-ray analysis and magnetic measurements. The 2D grid-like network of 1 consists of 1D chain of Cu-pyz units connected by end-on azido bridge. 1 crystallizes in the monoclinic space group C2 with a = 15.148(6) Å, b = 6.877(2) Å, c = 3.4591(12) Å and Z = 2. The magnetic investigation showed the presence of an antiferromagnetic interaction between the copper(II) ions mainly mediated through pyrazine bridge.  相似文献   

5.
Synthesis, spectroscopic and magnetic properties, and X-ray crystal structures of two copper(II) polymers Cu(2-qic)Br (2-qic = quinoline-2-carboxylate) (1) and Cu(2-pic)Br (2-pic = pyridine-2-carboxylate) (2) are described. These compounds are isostructural with Cu(2-qic)Cl and Cu(2-pic)Cl, respectively, the X-ray crystal structures of which were reported recently. Both complexes are polynuclear copper(II) compounds (1D and 2D, respectively) based on syn-anti carboxylate bridges and additionally on linear monobromo- (in 1) and dibromo-bridging (in 2) motifs. The magnetic properties were investigated in the temperature range 1.8-300 K. They reveal the occurrence of strong antiferromagnetic coupling (J1 = −102.5 cm−1) through the single bromo-bridge in 1, which is much stronger than that transmitted by the single chloro-bridge (J = −57.0 cm−1). Very weak ferromagnetic interaction through the syn-anti carboxylate bridge J2 is expected as it was observed in isomorphous Cu(2-qic)Cl (J = 0.37 cm−1). For 2 a weak ferromagnetic couplings through the syn-anti carboxylate (zJ′ = 1.35 cm−1) and dibromo-bridges (J = 8.31 cm−1) were found. The experimental results indicate that the observed ferromagnetic exchange through dibromo-bridge is weaker than that in the chloride analog (J = 15.0 cm−1). The magnitude of magnetic interactions is discussed on the basis of structural data of compounds 1 and 2 and their halide analogues.  相似文献   

6.
Based on the complex ligand (CuL H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclotetradeca-7,13-diene), which includes macrocyclic oxamido bridge, three trinuclear complexes were prepared. They are of the formula [(CuL)2M(ClO4)2] (M = Co(1), Ni(2)) and [(CuL)2Zn(CH3OH)2] · (ClO4)2 (3). The crystal structures of the three complexes have been determined and the M(II) of the three complexes all exist on the mirror plane. Complex 1 is the first Cu-Co complex bridged by oxamido. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −28.12 cm−1 for 1, J = −42.88 cm−1 for 2, and J = −2.13 cm−1 for 3.  相似文献   

7.
This work presents a systematic investigation on coordination chemistry of a novel pyridine-2,6-dicarboxylic acid N-oxide (pydco), and also reveals the significant function of supramolecular interactions in dominating the resultant crystalline nets. Assemblies of pydco with transition-metal ions under similar conditions yield a series of polymers in the absence/presence of the organonitrogen ligands {[Cu(pydco)(L)0.5(H2O)] · 2H2O}n (L = bipy (1), bpa (2) and bpe (3)), {[M(pydco)(bpp)(H2O)] · 2H2O}n (M = Cu (4) and Ni (5)), [Ag2(pydco)]n (6) and [Ag2Cu(pydco)2]n (7) (bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane). 1-5 feature different structural characteristics, although they exhibit analogous chain networks. Remarkably, extended architectures are further constructed with the aid of weak interactions. Reaction of pydco with AgAc yields a 2-D polymer 6, which was reported in our recent Communication. A mixed-metal coordination polymer 7 was obtained by the self-assembly of AgAc, Cu(Ac)2 · H2O and pydco.In 7, two left- and right-hand helical chains are constructed by carboxylic groups of pydco and Cu centers, which are further connected by [AgCO2]2 cores into a 2-D network. Structural evolution under the co-ligand intervention in this series of compounds, as well as the general coordination rule of pydco, has been further discussed. Furthermore, variable temperature magnetic properties of 1, 3 and 7 are also studied. The magnetic measurements of 1 and 3 reveal the existence of weak antiferromagnetic interactions with J1 = −4.59 cm−1 and J2 = −4.63 cm−1, respectively. Whereas 7 displays weak ferromagnetic interactions with J3 = 1.81 cm−1.  相似文献   

8.
Two new binuclear radical complexes derived from a new long nitronyl nitroxide ligand, 2-[4-(5-pyrimidyl)phenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (4-NITPhPyrim), and M(hfac)2 (M2+ = Cu2+, Mn2+; hfac = hexafluoroacetylacetonato), [Cu(hfac)2(4-NITPhPyrim)]2 · 4H2O (1) and [Mn(hfac)2(4-NITPhPyrim)]2 · 4H2O (2), were synthesized as well as characterized structurally and magnetically. X-ray analysis indicates that 1 and 2 are rectangle-like centrosymmetric dimer M2L2 complexes. Magnetic measurements indicate that there are two types of magnetic exchanges in 1: the ferromagnetic (FM) exchange between the Cu(II) ion and the directly bonded nitroxide unit (J1 = 24.20 cm−1) and the weak FM exchange of Cu-NIT through the pyrimidine and phenyl rings (J2 = 0.62 cm−1). Besides the strong antiferromagnetic (AFM) coupling between the Mn(II) ion and the directly bonded nitroxide unit (J = −87.61 cm−1), there is a weak FM interaction between the two Mn-NIT pairs (θ = 0.39 K) in 2.  相似文献   

9.
The tridentate unsymmetrical ligand N-(2-hydroxymethylphenyl)salicylideneimine H2L, derived from salicylaldehyde and 2-aminobenzylalcohol, with [ONO] donor atoms yields [L2FeIII2Cl2] (1) and [L6FeIII4] (2) complexes containing alkoxide bridges, which have been structurally characterized by X-ray diffraction. In complex 1, each ferric ion is five-coordinated with a distorted square-pyramidal geometry, the basal planes of which are symmetrically bridged by two alkoxide oxygen atoms. Analysis of the susceptibility data reveals antiferromagnetic interactions with an exchange parameter J = −15.8 cm−1 between the high-spin d5 ferric centers. The structure of 2 can be considered as “linear (2,2,2)” to specify the number of enolate oxygen atoms between four iron atoms. Variable-temperature magnetic susceptibility data are fitted to a “three-J” model, yielding pairwise antiferromagnetic exchange interactions, J12 = J34 = −13.4 cm−1, J13 = J24 = −7.1 cm−1, J23 = −14.9 cm−1, between the neighboring ferric centers; J14 is assumed to be negligible. Complex 2 has a complicated low-lying magnetic structure with a non-diamagnetic ground state. In addition, the Fe-O-Fe angles at the bridging ligands seem to be determinant for the strength of the antiferromagnetic interactions.  相似文献   

10.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

11.
Reaction of bis(2-hydroxybenzyl)-1,3-diaminopropane (H2bhbd) with copper(II) perchlorate and copper(II) chloride in methanol, respectively, leads to linear trinuclear clusters, namely [Cu3(bhbd)2(CH3OH)2(ClO4)2] (1) and [Cu3(bhbd)2Cl2](CH3OH)4 (2). These coordination compounds were characterized by X-ray crystallography, UV-Vis, IR and EPR spectroscopy, and magnetic susceptibility measurements. Both complexes have a linear trinuclear array of copper ions bridged by means of phenolato O atoms and separated by a distance of 2.985(4) Å (1) and 2.937(4) Å (2). Strong antiferromagnetic interactions between these adjacent CuII ions govern the magnetochemistry of 1 (J = −303(1) cm−1) and 2 (J = −482(3) cm−1) resulting in S = 1/2 ground states fully populated below 150 K. A correlation between the interaction parameter J and the angles within the trinuclear clusters is proposed.  相似文献   

12.
Two pyrazine-connected 1D copper(I) dppm polymers, {[Cu3(dppm)3Br2][Cu2(dppm)(pyz)Br2] Br · (CH3OH)2}n (1) and {[Cu2(dppm)2(NO3)2(pyz)](pyz)}n (2) (dppm = bis(diphenylphosphino)methane, pyz = pyrazine) have been synthesized and characterized by X-ray crystallography, luminescence, IR, 1H, and 31P NMR. Structure analysis shows that complex 1 is a neutral 1D polymer in sine-curve-like form, while complex 2 is in linear form. And photoluminescent study of them shows that they exhibit fluorescent emission bands at ca. 434 nm and 431 nm, respectively.  相似文献   

13.
Using the ligand 1,4,5-triazanaphthalene (abbreviated as tan) in combination with Cu(II) salts, three mononuclear compounds, Cu(tan)2Cl2 (1), Cu(tan)2Br2 (3), Cu(tan)2(NO3)2 (5) and three polynuclear compounds, [Cu(tan)Cl2]n (2), [Cu(tan)Br2]n (4), [Cu(tan)(NO3)2]n (6) have been synthesized and characterized by UV-Vis, EPR, FTIR and Far-FTIR spectroscopies. The crystal structures of compounds 1, 3, 5 and 6 are reported, as well as that of the dioxane adduct of compound 4, [Cu(tan)Br2(C4H8O2)](C4H8O2) (4A).The structure of (2) was solved by X-ray powder diffraction. The coordination geometry around the Cu(II) atoms is tetrahedral for (1) and (3), square-pyramidal for (4A) and distorted octahedral for (5) and (6). Magnetic susceptibility measurements on the polynuclear compounds revealed weak antiferromagnetic interactions between the Cu(II) atoms with interaction constants (J) of J = −9.1 and −10.5 cm−1, for 4 and 6, respectively. For compound 2 two options for possible interactions were considered, with interaction constants which vary for Jrung −22.0 to −13.5 cm−1 and Jrail −19.6 to −17.0 cm−1. These figures are discussed in the light of relevant structural parameters and literature.  相似文献   

14.
A novel series of copper(II) complexes of formula [Cu(tren)(mpda)](ClO4)2 · 1/2H2O (1), [Cu2(tren)2(mpda)](ClO4)4 · 2H2O (2), and [Cu2(tren)2(ppda)](ClO4)4 · 2H2O (3) containing the tetradentate tris(2-aminoethyl)amine (tren) terminal ligand and the potentially bridging 1,n-phenylenediamine [n = 3 (mpda) and 4 (ppda)] ligand have been prepared and spectroscopically characterized. X-ray diffraction on single crystals of 1 and 3 show the presence of mono- (1) and dinuclear (3) copper(II) units where the mpda (1) and ppda (3) ligands adopt terminal monodentate (1) and bridging bis(monodentate) (3) coordination modes toward [Cu(tren)]2+ cations with an overall non-planar, orthogonal disposition of the phenylene group and the N-Cu-N threefold axis of the trigonal bipyramid of each copper(II) ion [values of the Cu-N-C-C torsion angle (?) in the range of 50.8(3)-79.2(2) (1) and 80.9(2)-86.5(2)° (3)]. Variable-temperature magnetic susceptibility measurements on the dinuclear complexes 2 and 3 show the occurrence of moderate ferromagnetic (J = +8.3 cm−1, 2) and strong antiferromagnetic (J = −51.4 cm−1, 3) couplings between the two copper(II) ions across the meta- and para-phenylenediamine bridges, leading to S = 1 (2) and S = 0 (3) ground spin states [H = −JS1 · S2 with S1 = S2 = SCu = 1/2]. Density functional theory (DFT) calculations on the triplet (2) and broken-symmetry (BS) singlet (3) ground spin states, support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction through the predominantly π-type orbital pathway of the 1,n-phenylenediamine bridge. Finally, a new magneto-structural correlation between the magnitude of the magnetic coupling (J) and the Cu-N-C-C torsion angle (?) has been found which reveals the role of σ- versus π-type orbital pathways in the modulation of the magnetic coupling for m- and p-phenylenediamine-bridged dicopper(II) complexes.  相似文献   

15.
Three new coordination compounds, [Ni(Pht)(Py)2(H2O)3] (1), [Ni(Pht)(β- Pic)2(H2O)3] · H2O (2) and [Ni(Pht)(1-MeIm)2(H2O)3] (3) (where Pht2− = dianion of o-phthalic acid; Py = pyridine, β-Pic = 3-methylpyridine, 1-MeIm = 1-methylimidazole), have been synthesized and characterized by IR spectroscopy and thermogravimetric analysis. Crystallographic studies 1-3 reveal that each Ni(II) center has a distorted octahedral geometry being coordinated by two nitrogen atoms of aromatic amines, one oxygen atom from a carboxylate group of a phthalate ligand and three water molecules. Pht2− anions act as monodentate ligands, while the remaining uncoordinated carboxylate oxygen atoms participate in the formation of hydrogen bonding. The uncoordinated oxygen atoms form hydrogen bonds with the coordinated water molecules from adjacent complexes creating a centrosymmetric dimer unit. Further, these dimer units are connected by O-H?O hydrogen bonds in double-chains. Depending on the nature of aromatic amines, the arrangement of these double-chains differs. The double-chains are held together only by van der Waals interactions in 1. In contrast, in 2 these chains form layers by π-π interactions between antiparallel molecules of β-Pic as well as by π-π interactions between β-Pic and Pht aromatic rings. In complex 3, the double-chains are knitted together via C-H?O hydrogen bonds between the methyl group of 1-MeIm and the coordinated carboxylate oxygen atom of Pht, as well as π-π contacts involving antiparallel 1-MeIm cycles. The thermal dependence of the magnetic susceptibilities for compounds 1 and 2 shows a weak antiferromagnetic interaction between the two Ni2+ ions of the hydrogen bonded dimers. For compound 3, a ferromagnetic interaction could be observed. Modeling the experimental data with MAGPACK resulted in: g = 2.22, |D| = 4.11 cm−1 and J = −0.29 cm−1 for compound 1, g = 2.215, |D| = 3.85 cm−1 and J = −0.1 cm−1 for compound 2 and g = 2.23, |D| = 4.6 cm−1 and J = 0.22 cm−1 for compound 3.  相似文献   

16.
(ML)2(bipy) complexes (LH2 = thiosemicarbazone of 2-hydroxybenzaldehyde, bipy = 4,4′-bipyridine, M = Ni(II), 1, or Cu(II), 2) were synthesized and characterized by X-ray crystallography. Compound 1 possessed porous structure due to peculiarities of crystal packing, whereas 2 formed infinite zig-zag chains with dense non-porous packing. It was shown that 1 absorbed 0.013 cm3/g of methanol vapor in two steps. Complex 1 was diamagnetic; for 2, the dependency of χ versus T could be interpreted by Bleaney-Bowers expression in 20-300 K temperature range (J = −6.8 cm−1, g = 2.07).  相似文献   

17.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

18.
Two new squarato-bridged Fe(II) polymeric networks of molecular formula [Fe(squarate)(bpp)2(H2O)2] (1) and [Fe(squarate)(bpee)(H2O)2] (2) [bpp = 1,3-bis(4-pyridyl)propane; bpee = 1,2-bis(4-pyridyl)ethylene; ] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature (300-2 K) magnetic measurements. Complex 1 is a 1D coordination chain of Fe(H2O)2 units connected by μ-O,O″ squarate dianions with monocoordinated bpp ligands dangling from the polymer. These 1D chains ultimately transform to a thick 2D layer through π-π interaction of pyridyl rings as well as through hydrogen bonds. Whereas structural determination of complex 2 reveals an inclined interpenetrated 3D architecture. Magnetic data for both the complexes 1 and 2 have been fitted using the Fisher formula for S = 2 system and show antiferromagnetic coupling for both the complexes. The best fit parameters are J = −0.40 cm−1, g = 2.30 and R = 0.01 for complex 1 and J = −0.49 cm−1, g = 2.08 and R = 1.9 × 10−3 for complex 2.  相似文献   

19.
Dinuclear nickel(II) complexes [Ni2(bomp)(MeCO2)2]BPh4 (1) and [Ni2(bomp)(PhCO2)2]BPh4 (2) were synthesized with the dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. X-Ray analysis revealed that the complex 1 · 0.5CHCl3 contains two nickel(II) ions bridged by phenolic oxygen and two acetate groups, forming a μ-phenoxo-bis(μ-acetato)dinickel(II) core. Electronic spectra were investigated for 1 and 2 in the range of 400-1800 nm, and the data were typical for the octahedral high-spin nickel(II) complexes. Obtained spectral components were well simulated based on the angular overlap model assuming the trigonally distorted octahedral geometry. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 4.5-300 K. The optimized magnetic data were J = 1.75 cm−1, zJ′ = −0.234 cm−1, g = 2.21, D = 15.1 cm−1, and TIP = 370 × 10−6 cm−1 for complex 1 and J = 3.55 cm−1, zJ′ = −0.238 cm−1, g = 2.23, D = 21.8 cm−1, and TIP = 470 × 10−6 cm−1 for complex 2. The data revealed ferromagnetic interactions between the two nickel(II) ions.  相似文献   

20.
The complexes [Cu2(ox)(phen)2(H2O)2](NO3)2 (1), [Cu2(sq)(pmdien)2(H2O)2](ClO4)2 (2) and {[Cu3(pdc)3(4,4′-bipy)1.5(H2O)2.25] · 2.5(H2O)}n (3) [phen = 1,10-phenanthroline; pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine; 4,4′-bipy = 4,4′-bipyridine; ox = oxalate dianion; sq = squarate dianion and pdc = pyridine 2,6-dicarboxylate] have been synthesized and characterized by X-ray single crystal structure determination, low temperature magnetic measurement and thermal study. Structure determination reveals that 1 and 2 are dinuclear copper(II) complexes bridged by oxalate and squarate dianions, respectively, while 3 is a hexanuclear species formed by three Cu(pdc)(H2O)-(4,4′-bipy)-Cu(pdc)(H2O) fragments, connected through long Cu-O(pdc) bonds in a centrosymmetric arrangement. In complex 1 H-bonds occurring between the coordinated water molecules and lattice nitrate anions result in eight-membered ring clusters with the concomitant formation of 1D supramolecular chain. The adjacent chains undergo π-π stacking forming a 2D architecture. In the crystal of 3 an extensive H-bonding scheme gives rise to a 3D supramolecular network. Low temperature magnetic study shows a strong antiferromagnetic coupling in 1 (J = −288 ± 2 cm−1, g = 2.21 ± 0.01, R = 1.2 × 10−6); and a very weak interaction in 2 and 3, the best-fit parameters being: J = −0.21 cm−1, g = 2.12 ± 0.01, R = 1.1 × 10−6 (2) and J = −1.34 cm−1 ± 0.1, g = 2.14 ± 0.01, R = 1.2 × 10−6 (3) (R defines as .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号