首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Galactosidase and tryptophanase can be induced inEscherichia coli simultaneously or gradually during a batch cultivation. In the strainEscherichia coli K 12 and ML 30, in which the synthesis of the two enzymes was induced simultaneously, only the synthesis of tryptophanase partially decreased, whereas the synthesis of β-galactosidase was not influenced. In the strains B 28 and ATCC 9637 the synthesis of both enzymes was partially decreased. On a gradual induction of these enzymes in the strainEscherichia coli E 12 only the synthesis of tryptophanase decreased. Thus, the results obtained here resemble those observed during the simultaneous induction. In addition, it was found that it is not important which of the two enzymes is induced as the first one.  相似文献   

2.
β-Galactosidase and tryptophanase were induced either simultaneously or successively during continuous cultivation of the inducible strainEscherichia coli K 12 in the chemostat. Growth was limited by glycerol and the dilution rate was 0.1 h−1. During both the simultaneous and successive induction specific rates of synthesis, as well as maximum enzyme levels, were identical with those obtained after independent induction of individual enzymes. As compared with batch cultivation, β-galactosidase reached the same specific rate of synthesis in the chemostat, whereas the specific rate of synthesis of tryptophanase in the chemostat was up to five times higher.  相似文献   

3.
Catabolite repression of tryptophanase in Escherichia coli   总被引:16,自引:14,他引:2       下载免费PDF全文
Catabolite repression of tryptophanase was studied in detail under various conditions in several strains of Escherichia coli and was compared with catabolite repression of beta-glactosidase. Induction of tryptophanase and beta-galactosidase in cultures grown with various carbon sources including succinate, glycerol, pyruvate, glucose, gluconate, and arabinose is affected differently by the various carbon sources. The extent of induction does not seem to be related to the growth rate of the culture permitted by the carbon source during the course of the experiment. In cultures grown with glycerol as carbon source, preinduced for beta-galactosidase or tryptophanase and made permeable by ethylenediaminetetraacetic acid (EDTA) treatment, catabolite repression of tryptophanase was not affected markedly by the addition of cAMP (3',5'-cyclic adenosine monophosphate). Catabolite repression by glucose was only partially relieved by the addition of cAMP. In contrast, under the same conditions, cAMP completely relieved catabolite repression of beta-galactosidase by either pyruvate or glucose. Under conditions of limited oxygen, induction of tryptophanase is sensitive to catabolite repression; under the same conditions, beta-galactosidase induction is not sensitive to catabolite repression. Induction of tryptophanase in cells grown with succinate as carbon source is sensitive to catabolite repression by glycerol and pyruvate as well as by glucose. Studies with a glycerol kinaseless mutant indicate that glycerol must be metabolized before it can cause catabolite repression. The EDTA treatment used to make the cells permeable to cAMP was found to affect subsequent growth and induction of either beta-galactosidase or tryptophanase much more adversely in E. coli strain BB than in E. coli strain K-12. Inducation of tryptophanase was reduced by the EDTA treatment significantly more than induction of beta-galactosidase in both strains. Addition of 2.5 x 10(-3)m cAMP appeared partially to reverse the inhibitory effect of the EDTA treatment on enzyme induction but did not restore normal growth.  相似文献   

4.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

5.
During a simultaneous induction of three enzymes which are subject to catabolite repression (β-galactosidase, tryptophanase and amylomaltase, or β-galactosidase, tryptophanase and D-serine deaminase) in a batch culture, the rates of synthesis of β-galactosidase and tryptophanase decreases, while the rates of synthesis of amylomaltase and D-serine deaminase remain unaffected. The addition of cAMP brings about a considerable increase of the rate of synthesis of D-serine deaminase and a partial synthesis rate increase of β-galactosidase while the synthesis rate of tryptophanase remains lowered and the synthesis rate of amylomaltase remains unaffected. In a continuous culture β-galactosidase, tryptophanase andD-serine deaminase are synthesized simultaneously at a maximum rate without mutual influence. The addition of cAMP increases the rate of synthesis of all three enzymes.  相似文献   

6.
M Piovant  C Lazdunski 《Biochemistry》1975,14(9):1821-1825
In this study we have tried to answer the following questions: (1) is it possible for different catabolite-repressible genes, although submitted to the same control, to be expressed selectively depending upon the growth conditions, and (2) what is the effect of increasing the osmolarity of the medium on the intracellular level of cAMP? Two conditions were found to cause a continuous variation of intracellular cAMP levels during growth. With different strains, higher cAMP levels are required for induction of the tryptophanase gene than one required for induction of the lactose operon. cAMP has been provided externally in adenyl cyclase minus cells of a mutant that has been made permeable by EDTA treatment. Although external cAMP concentrations, 10 times higher than the usual intracellular levels, are required for induction of beta-galactosidase and tryptophanase, the difference of requirements of cAMP is maintained. An increase in the osmolarity of the medium by sucrose addition causes a fourfold decrease in the intracellular cAMP level. As a consequence this prevents the induction of tryptophanase whereas beta-galactosidase is still inducible. After pulse induction, a difference in the kinetics of expression of the tryptophanase and beta-galactosidase genes was found. Its relationship with the previous results is discussed.  相似文献   

7.
We constructed two plasmids that have a strong tac promoter and a structural gene for tryptophanase of Enterohacter aerogenes SM-18 (pKT901EA) or Escherichia coli K-12 (pKT951EC). The tryptophanase activity of E. coli JM109 transformed with pKT90lEA (JM109/pKT901EA) was inducible with isopropyl-β-D-thiogalactopyranoside, and 3.6 times higher than that of E. aerogenes SM-18. Cells of JM109/pKT901EA induced for tryptophanase synthesized L-tryptophan from indole, ammonia, and pyruvate more efficiently than E. aerogenes SM-18. Although JM109/pKT951EC expressed a similar level of tryptophanase activity to that of JM109/pKT901EA, the synthesis of L-tryptophan by the cells of JM109/pKT951EC did not proceed well compared with JM109/pKT901EA. Tryptophanases from E. aerogenes and E. coli K-12 were purified, and their properties were investigated. The purified E. aerogenes tryptophanase showed higher stability against heat inactivation than E. coli tryptophanase.  相似文献   

8.
Summary A mutant of E. coli has been isolated that is temperature-sensitive in respect of tryptophanase. When incubated at 60°C, cell-free extracts of the mutant suffer inactivation of enzyme activity much more rapidly than similar extracts of the wild type. After lysogeny with a specialized transducing phage carrying the wild-type tryptophanase gene, the mutant is able to synthesize tryptophanase that is wild-type in its response to treatment at 60°C. It is concluded that the mutation lies in the structural gene for the enzyme.Two further mutants have been isolated that synthesize tryptophanase constitutively. One mutation renders synthesis of the enzyme indifferent to the presence of inducer; the other mutation allows synthesis of the enzyme in the absence of inducer at about 35% of the fully induced wild-type rate. Neither mutation alleviates catabolite repression. Genetic mapping shows that the constitutive mutations lie very close to the structural-gene mutation, on the side of the structural gene distant from bglR.  相似文献   

9.
10.
Zusammenfassung In der vorliegenden Arbeit wurde die Wirkung des Ultraschalls auf die Tryptophanase in Escherichia coli untersucht. Es konnte nachgewiesen werden, daß Ultraschall das Tryptophanase-Protein angreift, während das Coenzym Pyridoxalphosphat nicht verändert wird. Weiterhin wurde die Veränderung des Pyridoxalphosphats durch Ultraschall in vitro festgestellt.
Summary The action of ultrasonic waves on the tryptophanase in Escherichia coli is described. The proteine of the tryptophanase is changed by ultrasonic waves, whereas the coenzyme pyridoxalphosphate is stable. In vitro pyridoxalphosphate is changed by ultrasonic waves.
  相似文献   

11.
Summary A simple and rapid technique for quick identification of tryptophanase regulatory mutants and tryptophanase positive clones in a bacterial population is described. This method was used for the detection of tryptophanase regulatory mutants of Vibrio cholerae and tryptophanase positive recombinant clones of Escherichia coli.  相似文献   

12.
Two-dimensional gel electrophoresis and N-terminal amino acid sequence determination were used to compare the protein synthesis of exponentially growing Escherichia coli with heme-deficient cells. Mutation of the E. coli hemA gene encoding glutamyl-tRNA reductase resulted in the absence of detectable amounts of heme. As a consequence of heme deficiency, the induction of tryptophanase (trpA), citrate synthase (gltA), and aldehyde dehydrogenase (aldA) and the repression of enolase (eno) and phosphoglycerate kinase (pgk) were observed. All induced genes are under the control of the catabolite repressor protein Crp. The observed changes in gene expression as a consequence of heme depletion are discussed. Received: 19 March 1998 / Accepted: 28 April 1998  相似文献   

13.
The relationship between cyclic adenosine 3',5'-monophosphate (cyclic AMP) metabolism and the induction of tryptophanase and beta-galactosidase was studied in several strains of Escherichia coli grown with succinate, acetate, glycerol, or glucose as the carbon source. No consistent relationship between the intracellular concentration of cyclic AMP in the several strains cultured and the various carbon sources was discerned. In E. coli K-12-1 the induction of tryptophanase was found to vary in the order: succinate greater than acetate greater than glycerol greater than glucose, and that of beta-galactosidase was found in the order: glycerol greater than acetate greater than succinate greater than glucose. Rate of accumulation of cyclic AMP in the culture filtrate was in the order: succinate greater than acetate greater than glycerol greater than glucose. The addition of glycerol to E. coli K-12-1 grown in acetate caused inhibition of tryptophanase and slight inhibition of accumulation of extracellular cyclic AMP. These same conditions caused beta-galactosidase induction to be stimulated. The addition of exogenous cyclic AMP to cultures grown with four different carbon sources had an effect characteristic for each of the two enzymes studied as well as each individual carbon source. The results suggest that there are control elements distinct from cyclic AMP and its receptor protein which respond to the catabolic situation of the cell.  相似文献   

14.
Symbiobacterium thermophilum is an obligately symbiotic thermophile that can grow only in coculture with a specific Bacillus strain. The amino acid sequences of fragments obtained by cyanogen bromide decomposition of the thermostable -tyrosinase (tyrosine phenol-lyase, E.C. 4.1.99.2) from this organism resembled that of the tryptophanase produced by the same organism. DNA-probing with the tryptophanase gene as the hybridization probe led to cloning in Escherichia coli of the -tyrosinase (tpl) gene. The nucleotide sequence revealed that the -tyrosinase of 458 amino acids (relative molecular mass, 52269) showed significant similarity in amino acid sequence to the tryptophanase over the entire sequence. DNA manipulation of the cloned tpl gene in E. coli led to production of 375 times as much -tyrosinase as that produced by the original S. thermophilum strain.  相似文献   

15.
Nine independent mutants deficient in tryptophanase activity were isolated. Each mutation was transferred to a specialized transducing phage that carries the tryptophanase region of the Escherichia coli chromosome. The nine phages thus produced, and a tenth carrying a previously characterized tryptophanase mutation, were used to lysogenize a bacterial strain harbouring a mutation in the tryptophanase structural gene and also a suppressor of polarity. In no case was complementation observed; we conclude that there is no closely linked positive regulatory gene for tryptophanase.  相似文献   

16.
The conditions for synthesis, purification, and properties of tryptophanase by a marine organism (Vibrio K-7) were studied. Tryptophanase was induced by tryptophan and its analogs, and partially repressed by 0.5% glucose or glycerol. NaCl (0.4M) was required for optimal growth and tryptophanase activity in whole cells. The enzyme was purified to 92% homogeneity by heat treatment, hydroxyapatite chromatography and fractionation with ammonium sulfate. This tryptophanase has been found to have kinetic properties similar to the tryptophanase from other microorganisms. It carries out both , -elimination reactions (using tryptophan, serine, cysteine and S-methyl-cysteine as substrates) and -replacement reactions (forming tryptophan from indole and serine, cysteine or S-methyl-cysteine). The enzyme has a sedimentation coefficient of 9.2S and requires pyridoxal 5-phosphate as a cofactor. The optimal pH for the tryptophanase reaction is pH 8.0.Nonstandard Abbreviations PLP pyridoxal 5-phosphate - TPase tryptophanase - TSase tryptophan synthase - DHase dehydratase - TCA tricarboxylic acid - BSA bovine serum albumin Preliminary reports of this work have been presented (M. J. Klug and R. D. DeMoss, Bacteriol. Proc. 1971, p. 132; D. D. Whitt and R. D. DeMoss, Abstr. Annu. Meet. Am. Soc. Microbiol. 1973, p. 148)  相似文献   

17.
From a strain lacking adenyl cyclase and the catabolite-sensitive gene activator protein, two mutants were isolated that can synthesize tryptophanase. Each mutation is extremely closely linked to the tryptophanase structural gene. The mutations differ from one another in the rate of synthesis of tryptophanase that they permit in the genetic background in which they were isolated; they differ from one another and also from the wild type in the maximum rate of synthesis of tryptophanase that they permit in a genetic background with intact adenyl cyclase and catabolite-sensitive gene activator protein. Both mutations appear to lie in the tryptophanase promoter.  相似文献   

18.
Summary Escherichia coli cultures grown in salts-synthetic media produce a pigment with tryptophane. Pigment formation is dependent on the tryptophanase activity of the strains and is markedly suppressed by the addition of glucose in the medium. Pigment formation is also highly dependent on light. Other factors influencing this phenomenon are described.  相似文献   

19.
The refolding of the tetrameric enzyme tryptophanase was facilitated by the chaperonin GroE. Maximum refolding yield of tryptophanase molecules (about 80%) was attained in the presence of a 15-fold excess of GroE 21-mer over tryptophanase monomer. The GroEL subunit was required for this improvement in refolding yield, whereas the GroES subunit was not. Light scattering experiments of the refolding reaction revealed that GroE bound to tryptophanase folding intermediates and suppressed their aggregation. The presence of ATP was required for the efficient dissociation of tryptophanase from GroEL. However, our experiments indicated that tryptophanase dissociated readily from GroEL in the presence of not only ATP, but also in the presence of non-hydrolyzable ATP analogues such as ATP gamma S (adenosine 5'-O-(3-thiotriphosphate)) and AMP-PNP (adenyl-5'-yl imidodiphosphate) as well. Surprisingly, the release of tryptophanase from GroEL was facilitated in the presence of ADP as well. We concluded that the binding of nucleotides such as ATP and ADP changed the conformation of GroEL and facilitated the dissociation of tryptophanase molecules. The conformation formed in the presence of ADP was distinct from the conformation formed in the presence of ATP, as shown by the selective dissociation of various folding proteins from the two conformations.  相似文献   

20.
A new process for tryptophan production was established using a lipoic acid auxotrophic mutant, Enterobacter aerogenes l-12, which has both pyruvic acid productivity and tryptophanase activity. The process consists of the production of pyruvic acid from glucose by the washed cells and the subsequent conversion of the acid to tryptophan by the tryptophanase itself in the presence of indole and NH4C1.

To prepare washed cells of which the tryptophanase activity and the pyruvic acid productivity were both high, it was best to culture the strain in a medium containing 1 % Polypepton, 0.2 % glucose, 3 μg/1 dl-lipoic acid, 0.05 % l-tryptophan, and mineral salts. The optimum composition of the reaction mixture for the pyruvic acid production by the washed cells was established. Under these conditions, 17 g/1 of pyruvic acid was accumulated from 5 % glucose after 36 hr of incubation. Thus, the conversion of the pyruvic acid to tryptophan was done by adding indole, NH4C1, pyridoxal-5′-phosphate, Triton X-100, and KOH to adjust the pH to 9.0 to the above reaction mixture. As a result, the pyruvic acid was rapidly converted to tryptophan, and the concentration of 14 g/1 was obtained after 36 hr (total 72 hr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号