首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The genes of α-expansins of woody plants are of great interest for genetic engineering, since they can potentially be used to improve the tree growth parameters. In the flora of Russia, model woody plants for plant biotechnology are aspen (Populus tremula L.) and black poplar (Populus nigra L.). The objective of this study was to determine the role of α-expansin-encoding genes, aspen PtrEXPA3 and black poplar PnEXPA3, in the regulation and maintenance of woody plant growth. To achieve this goal, the PtrEXPA3 expression level were determined upon exogenous phytohormone treatment, the action of stress factors, and constitutive expression of the PnARGOS-LIKE gene. In addition, transgenic aspen plants with constitutive expression of the black poplar PnEXPA3 gene were generated, and their morphological analysis was carried out. The highest PtrEXPA3 mRNA level was detected in young intensely growing aspen leaves, and furthermore, expression of the gene was induced by exogenous cytokinins and auxins. In response to NaCl and constitutive expression of the PnARGOS-LIKE gene, the PtrEXPA3 mRNA level decreased. Transgenic aspen plants with constitutive PnEXPA3 expression were characterized by the decreased size of leaves, petioles, and internodes, as well as the increased size of leaf epidermal cells, while the stem size remained unchanged. Taken together, the data obtained enable the suggestion that the PtrEXPA3 and PnEXPA3 genes encode cytokinin- and auxin-regulated, leaf-specific expansins that are involved in the cell expansion.  相似文献   

2.
Expansins are non-enzymatic plant proteins breaking hydrogen bonds between cellulose microfibrils and hemicellulose polymer matrix. Each plant has many expansin genes, whose protein products participate in the regulation of plant growth and development mainly by regulating cell expansion. To analyze the effects of elevated expansin expression on the plant organ sizes, we cloned the AtEXPA10 gene from Arabidopsis thaliana and PnEXPA1 gene from Populus nigra. Transgenic tobacco plants expressing the target genes were obtained. The obtained transgenic tobacco plants were shown to have significantly larger leaves and longer stems compared to control plants. The flowers were quite insignificantly larger, but at the same time transgenic plants had more flowers. The microscopic studies showed that the organs of AtEXPA10-carrying plants were larger mainly due to stimulated cell proliferation, whereas the overexpression of the PnEXPA1 gene activated cell expansion.  相似文献   

3.
We obtained transgenic tobacco plants demonstrating overexpression of NtEXPA5 gene that encodes α-expansin of Nicotiana tabacum. The transgenic plants were characterized by increased size of leaves and stems. However, size of flowers remained almost unchanged. The increase of organ sizes was induced by cell elongation only. Moreover, the number of cell divisions was even decreased. The obtained data suggest tight interaction between cell stretching regulation and cell division, which together provide the basic mechanism aimed at the controlling of plant organ sizes.  相似文献   

4.
5.
Transgenic tobacco plants expressing the fragments of the ARGOS and NtEXPA4 genes in antisense orientation have been created. Eleven lines of transgenic plants were investigated and five of them were characterized by a decrease in the sizes of the leaves and flowers as compared to control. Stem sizes decreased when only the NtEXPA4 gene fragment was used. The organ size of the experimental plants decreased because of a reduction in the level of both cell division and cell expansion. Two lines of transgenic tobacco plants expressing the part of the ARGOS gene in antisense orientation were characterized by a reduction in the level of the NtEXPA1 and NtEXPA4 gene expression.  相似文献   

6.
Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture.  相似文献   

7.
3-Hydroxy-3-methylglutaryl-CoA reductase (HMG1) catalyzes the formation of mevalonic acid, the key intermediate of the cytosolic isoprenoid synthesis pathway. The parameters of stem and leaf growth were studied in the transgenic tobacco plants that express the HMG1 gene in both sense and antisense orientations towards the constitutive promoter. The transgenic plant height did not significantly differ from that of the control plants, though the plants carrying the sense copy of the HMG1 gene were considerably taller than plants that carried the antisense gene copy. Plants carrying an extra copy of the HMG1 gene were also characterized by increased leaf area. The number of mesophyll cells calculated per square unit of transgenic plants leaves was smaller than in the control plant leaves, though their volume was not considerably changed in any of the variants, suggesting changes in the cell packing density in leaves.  相似文献   

8.
9.
We identified a Populus nigra auxin-regulated gene involved in organ size (PnARGOS)-LIKE, encoding one organ size related protein in black poplar. It is homologous to AtARGOS and AtARGOS-LIKE genes of Arabidopsis thaliana. ABRE-like, G-box, GATA and I-box motifs were discovered in the promoter region of the poplar ARGOS-LIKE gene. In wild type aspen (Populus tremula) plants, an ortholog of the PnARGOS-LIKE gene (PtrARGOS-LIKE) was noticeably expressed in actively dividing and expanding young leaves and calli, whereas its mRNA content increased in response to exogenous 6-benzylaminopurine, 1-naphthaleneacetic acid, and 24-epibrassinolide. Expression of the PtrARGOS-LIKE gene was reduced under a salinity treatment. In addition, we generated transgenic tobacco and aspen plants with an up-regulated expression of the PnARGOS-LIKE gene. A constitutive expression of the gene contributed to an increase in size of stems and leaves of the transgenic tobacco plants. In the transgenic aspen, a constitutive expression of the PnARGOS-LIKE gene promoted an increase in the frequency of leaf initiations and in leaf length and area. The size of transgenic tobacco and aspen leaves increased due to the enlargement of individual cells. The results show the significance of the PnARGOS-LIKE gene for control of leaf initiation and organ growth by cell expansion in poplar.  相似文献   

10.
Plant defensins are small, basic cysteine-rich peptides that can inhibit the growth of a broad range of fungi or bacteria at micro-molar concentrations. They have been introduced as transgenes into different species to enhance host resistance to pathogens. In this study, a fusion gene of two defensins, Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) fused by a linker peptide of a polyprotein precursor from Impatiens balsamina was introduced into tobacco (Nicotiana tabacum var. Xanthi) via Agrobacterium-mediated leaf section transformation. Putative transgenic plants were confirmed by PCR analysis and integration of the fusion gene was confirmed by Southern blotting. RT-PCR analysis showed that the fusion gene was expressed in several confirmed transgenic plants. Western blotting analysis of crude protein extracts from leaves of the transgenic plants with anti-Tfgd2 and anti-RsAFP2 antibodies exhibited an 8 and 9 kDa bands corresponding to size of the fusion gene and confirmed the expression of fusion protein. When the leaves of transgenic plants were challenged with Rhizoctonia solani and Phytophthora parasitica var. nicotianae pathogens, they showed enhanced levels of disease resistance along with resistance to the generalist herbivore, Spodoptera litura larvae compared to control. Our results demonstrate that Tfgd2–RsAFP2 fusion protein is effective in protecting the transgenic plants against fungal and insect pathogens.  相似文献   

11.
12.
13.
14.
15.
16.

Key message

We report for the first time that expression of potato PR10a gene in faba bean causes enhanced tolerance to drought and salinity.

Abstract

Grain legumes such as soybean (Glycine max L. Merrill), pea (Pisum sativum L.) and faba bean (Vicia faba L.) are staple sources of protein for human and animal nutrition. Among grain legumes, faba bean is particularly sensitive to abiotic stress (in particular osmotic stress due to lack of water or enhanced soil salinity) and often suffers from severe yield losses. Many stress responsive genes have been reported with an effect on improving stress tolerance in model plants. Pathogenesis-related proteins are expressed by all plants in response to pathogen infection and, in many cases, in response to abiotic stresses as well. The PR10a gene isolated from the potato cultivar Desiree was selected for this study due to its role in enhancing salt and/or drought tolerance in potato, and transferred into faba bean cultivar Tattoo by Agrobacterium tumefaciens-mediated transformation system based upon direct shoot regeneration after transformation of meristematic cells derived from embryo axes. The transgene was under the control of the constitutive mannopine synthase promoter (p-MAS) in a dicistronic binary vector, which also contained luciferase (Luc) gene as scorable marker linked by internal ribosome entry site elements. Fertile transgenic faba bean plants were recovered. Inheritance and expression of the foreign genes were demonstrated by PCR, RT-PCR, Southern blot and monitoring of Luciferase activity. Under drought condition, after withholding water for 3 weeks, the leaves of transgenic plants were still green, while non-transgenic plants (WT) wilted and turned brown. Twenty-four hours after re-watering, the leaves of transgenic plants remained green, while WT plants did not recover. Moreover, the transgenic lines displayed higher tolerance to NaCl stress. Our results suggested that introducing a novel PR10a gene into faba bean could be a promising approach to improve its drought and salt tolerance ability, and that MAS promoter is not only constitutive, but also wound-, auxin/cytokinin- as well as stress-inducible.  相似文献   

17.
18.
Efficient procedures for regeneration and Agrobacterium-mediated transformation were established for Agrostis mongolica Roshev. and generated transgenic plants tolerant to drought and heat stresses using a regulatory gene from Arabidopsis, ABF3, which controls the ABA-dependent adaptive responses. The identification and selection of regenerable and reproducible callus type was a key factor for successful transformation. The transformation efficiency was 49.2% and gfp expression was detected in hygromycin-resistant calli and stem of putative transgenic plants. The result of Southern blot analysis showed that the ABF3 transgene was stably integrated into the genome of transgenic plants. Of the five transgenic lines analyzed, single transgene integration was observed in two lines and two copy integration was observed in three transgenic lines. Northern blot analysis confirmed that ubi::ABF3 was expressed in all transgenic lines. Transgenic plants exhibited neither growth inhibition nor visible vegetative phenotypic alternations. However, both transgenic and wild-type plants were highly sterile and did not flower during 3 years of growth period in the open field under subtropical Jeju Island climate. The stomata of the transgenic plants opened less than did stomata of the wild-type plants, and water content of the transgenic leaves remained about 3–4 fold higher than observed for wild-type leaves under drought stress. The transgenic plants showed about 2 fold higher survival rates under drought stress and about 3 fold higher survival rates under heat stress when compared to wild-type plants. Thus, overexpression of the Arabidopsis ABF3 gene results in enhancement of both drought and heat stress tolerance in Agrostis mongolica Roshev.  相似文献   

19.
20.
A chimaeric gene composed of the 5' upstream region of STLS1, a leaf/stem specifically expressed gene from Solanum tuberosum, and the RNA-coding as well as the 3' downstream region of patatin, the major storage protein of potato tubers, has been transferred into tobacco plants using the Agrobacterium system. The introduction of this gene led to a leaf/stem specific expression of a 42-kd large protein which immunocrossreacts with patatin antiserum. Only low amounts of immunoreacting protein of smaller size could be detected in transgenic tobacco leaves indicating that the patatin protein is fairly stable in this heterologous environment. The size of the protein as well as the size of the RNA detected in transgenic tobacco leaves using a patatin-specific probe indicates that the patatin RNA was accurately processed in both leaf and stem tissue of tobacco. The expression of the patatin gene led to the appearance of a new esterase activity in the transformed tobacco which co-migrated with a protein immunoreacting with patatin antiserum. These data therefore demonstrate that patatin in addition to serving as a storage protein displays an enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号