首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了研究G蛋白Rab3a与神经生长抑制因子 (growthinhibitoryfactor,GIF ,原称金属硫蛋白 3,MT 3)相互作用对神经元细胞生长的影响 ,以嗜铬细胞瘤株 (pheochromocytoma)PC1 2充当神经元模型 .将hMT 3(humanMT 3)和Rab3a基因分别克隆至真核表达载体pFlag CMV 2和pSV HA中 ,质粒共同转染PC1 2细胞 ,观察转染后细胞的生长状态 .以共转染pFlag CMV 2 hMT 1和pSV HA Rab3a的细胞组作为对照 ,验证hMT 3与Rab3a相互作用对PC1 2影响的特异性 .结果发现 ,共转染pFlag CMV 2 hMT 3和pSV HA Rab3a的PC1 2细胞生长明显受到抑制 ,细胞生长抑制率与GIF在脑提取物存在F的神经元生长抑制作用接近 ,但转染两基因中的任何单个基因以及共转染pFlag CMV 2 hMT 1和pSV HA Rab3a对PC1 2细胞生长无影响 .进一步构建重组表达质粒pGEX 4T 1 Rab3a和pGEX 4T 1 hMT 3,转化大肠杆菌BL2 1 ,经谷胱甘肽 Sepharose 4B亲和层析、凝血酶酶切和SephacrylS 1 0 0纯化 ,得到纯度 95 %以上的Rab3a和hMT 3蛋白 .体外细胞生物学活性检测表明 ,表达的Rab3a蛋白与重组hMT 3蛋白共培养PC1 2 ,对细胞的生长产生了明显的特异性协同抑制作用 ,抑制曲线与GIF在脑提取物存在下的神经元生长抑制曲线极为相似  相似文献   

2.
两种水稻GDP解离抑制蛋白基因的分离及特征分析   总被引:13,自引:0,他引:13  
以Rho家族成员OsRacD为诱饵 ,采用酵母双杂交体系 ,分离到两种与OsRacD互作的水稻RhoGDP解离抑制蛋白的基因 ,分别命名为OsRhoGDI1和OsRhoGDI2 .酵母体内结合和GSTpulldown分析结果显示 ,OsRhoGDI1和OsRhoGDI2与野生型和组成型激活的OsRacD都能结合 ,且不依赖GDI的N端部分序列 ;GDI和Rho的结合具有一定的特异性 .两种GDI在水稻根、地上组织和幼穗等多种组织和器官都有表达 ,但在表达特征上存在明显差异 .研究证实 ,在水稻中存在着调控RhoGTPases的GDP解离抑制蛋白基因家族 ,为Rho蛋白功能及相关信号通路的研究奠定了基础  相似文献   

3.
4.
《环境昆虫学报》2014,(1):71-77
桔小实蝇Bactrocera dorsalis(Hendel)是国内重要的果蔬害虫,能取食多种水果和蔬菜,给果蔬业造成严重的经济损失。Rab蛋白是一类小分子GTP 结合蛋白,在囊泡运输和信号传递中发挥了重要作用。本研究从桔小实蝇转录组文库中鉴定了7个Rab基因家族作为研究对象,利用实时荧光定量PCR等分子生物学技术研究了其表达模式。研究结果不仅有助于提高我们对桔小实蝇发育分子机制的理解,而且为防治桔小实蝇提供了新思路和新途径。  相似文献   

5.
生长抑制因子(GIF)与G蛋白Rab3a直接相互作用   总被引:5,自引:1,他引:5  
生长抑制因子(growth inhibitory factor, GIF), 又称金属硫蛋白-3, 为68个氨基酸组成的脑特异性金属硫蛋白, 具有广泛的生理功能; GIF可能与阿尔茨海默氏症(Alzheimer's)病理相关, 在Alzheimer's脑提取物存在下, 还对神经细胞具有特异的生长抑制活性.然而, 对其发挥生长抑制作用的分子机制并不清楚.运用酵母双杂交系统从人脑cDNA文库中筛选与GIF相互作用因子,从4.1×106个人脑cDNA文库转化子中,首次筛选到Ras家族G蛋白Rab3a C端,包含87个氨基酸的片段能与GIF相互作用;用PCR自人胎盘总cDNA中获得包含完整Rab3a编码序列的cDNA;通过酵母双杂交实验表明,全长Rab3a蛋白亦能与GIF相互作用.免疫共沉淀和蛋白质印迹实验进一步验证了GIF与Rab3a在哺乳动物细胞中可以相互作用; 而且, Rab3a是以GTP结合形式(GTP-Rab3a)与GIF发生相互作用.  相似文献   

6.
五步蛇毒血小板聚集抑制因子cDNA的克隆及表达   总被引:2,自引:1,他引:2  
采用一步法抽提五步蛇毒腺总RNA,通过RT-PCR的扩增出低分子量金属蛋白酶酶原的cDNA,克隆并测定了全序列。根据推导的氨基酸序列,发现其中一个cDNA除编码一个低分子量金属蛋白酶外,羧基端还包括一个血小板聚集抑制因子,这一结果证实了蛇毒金属蛋白酶和血小板聚集抑制因子起源于蛇毒金属蛋白酶酶原的前体。  相似文献   

7.
为提高白血病抑制因子在原核细胞中的表达水平,采用改变终止密码、改变5′端ATG前后序列及与高表达序列的融合等3种方法进行改构。实验表明,白血病抑制因子与重组IL-6部分序列融合后,表达量明显提高,其包含体经2次洗涤后目的蛋白含量可达65%。  相似文献   

8.
利用PCR技术扩增编码钩虫中性白细胞抑制因子(NIF)成熟肽的cDNA,克隆于表达载体pET-21a( )。序列分析表明与献报道一致。经IPTG诱导,在大肠杆菌BL21(DE3)plys中实现高效可溶性表达。SDS—PAGE分析结果表明,外源蛋白(相对分子质量28900)约占全菌蛋白的20%。菌体用溶菌酶处理。上清经Q—Sepharose FF阴离子交换、羟基磷灰石层析、Sephacryl S-100凝胶过滤,得到纯度约95%的重组NIF。活性测定结果表明,大肠杆菌表达的重组NIF能有效地抑制中性白细胞粘附。这些结果为利用大肠杆菌制备重组NIF奠定了基础。  相似文献   

9.
刘博强  唐利  简强  薛柯  王雷  李承新 《生物磁学》2011,(13):2474-2476
目的:研究Rab23在皮肤鳞状细胞癌(SCC)中的表达及意义。方法:用免疫组化S-P法分别检测30例皮肤SCC、15例正常皮肤组织标本中Rab23的表达。结果:Rab23在皮肤SCC和正常皮肤中阳性率分别为90%和13.3%,二者差异有统计学意义(P〈0.05)。结论:Rab23在皮肤SCC中高表达可能在皮肤SCC的发生发展过程中发挥作用。  相似文献   

10.
血管内皮细胞生长抑制因子(vascular endothelial cell growth inhibitor,VEGI)是近来发现的一类肿瘤坏死因子超家族成员,具有抑制内皮细胞增殖的作用。从人脐静脉内皮细胞株(ECV304)克隆到其基因,构建N端缺失23个氨基酸的表达载体,并通过原核表达系统进行表达(命名为VEGI151),表达量为25.5%,纯化后纯度达92.5%。通过生物学效应检测,发现VE  相似文献   

11.
The rab11 GTPase has been localized to both the Golgi and recycling endosomes; however, its Golgi-associated function has remained obscure. In this study, rab11 function in exocytic transport was analyzed by using two independent means to perturb its activity. First, expression of the dominant interfering rab11S25N mutant protein led to a significant inhibition of the cell surface transport of vesicular stomatitis virus (VSV) G protein and caused VSV G protein to accumulate in the Golgi. On the other hand, the expression of wild-type rab11 or the activating rab11Q70L mutant had no adverse effect on VSV G transport. Next, the membrane association of rab11, which is crucial for its function, was perturbed by modest increases in GDP dissociation inhibitor (GDI) levels. This led to selective inhibition of the trans-Golgi network to cell surface delivery, whereas endoplasmic reticulum–to–Golgi and intra-Golgi transport were largely unaffected. The transport inhibition was reversed specifically by coexpression of wild-type rab11 with GDI. Under the same conditions two other exocytic rab proteins, rab2 and rab8, remained membrane bound, and the transport steps regulated by these rab proteins were unaffected. Neither mutant rab11S25N nor GDI overexpression had any impact on the cell surface delivery of influenza hemagglutinin. These data show that functional rab11 is critical for the export of a basolateral marker but not an apical marker from the trans-Golgi network and pinpoint rab11 as a sensitive target for inhibition by excess GDI.  相似文献   

12.
In this study, we found that a subpopulation of CD4+CD25+ (85% Foxp3+) cells from persons with latent tuberculosis infection (LTBI) inhibits growth of M. tuberculosis (M. tb) in human monocyte-derived macrophages (MDMs). A soluble factor, Rho GDP dissociation inhibitor (D4GDI), produced by apoptotic CD4+CD25+ (85% Foxp3+) cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4+CD25+Foxp3+D4GDI+ cells do not produce IL-10, TGF-β and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1β, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3+) cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4+CD25+ (85% Foxp3+) cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.  相似文献   

13.
The FERM domain containing protein 7 gene (FRMD7) associated with the X-linked disorder idiopathic congenital nystagmus (ICN) is involved in the regulation of neurite elongation during neuronal development. Members of the Rho family of small G-proteins (Rho GTPases) are key regulators of the actin cytoskeleton and are implicated in the control of neuronal morphology. The Rho GDP dissociation inhibitor alpha, RhoGDIα, the main regulator of Rho GTPases, can form a complex with the GDP-bound form of Rho GTPases and inhibit their activation. Here, we demonstrate that the full length of the mouse FRMD7, rather than the N-terminus or the C-terminus alone, directly interacts with RhoGDIα and specifically initiates Rac1 signaling in mouse neuroblastoma cell line (neuro-2a). Moreover, we show that wild-type human FRMD7 protein is able to activate Rac1 signaling by interacting with RhoGDIα and releasing Rac1 from Rac1-RhoGDIα complex. However, two missense mutations (c.781C>G and c.886G>C) of human FRMD7 proteins weaken the ability to interact with RhoGDIα and release less Rac1, that induce the activation of Rac1 to a lesser degree; while an additional mutant, c.1003C>T, which results in a C-terminal truncated protein, almost fails to interact with RhoGDIα and to activate Rac1 signaling. Collectively, these results suggest that FRMD7 interacts with one of the Rho GTPase regulators, RhoGDIα, and activates the Rho subfamily member Rac1, which regulates reorganization of actin filaments and controls neuronal outgrowth. We predict that human mutant FRMD7 thus influences Rac1 signaling activation, which can lead to abnormal neuronal outgrowth and cause the X-linked ICN.  相似文献   

14.
Proteins (IEF's 1120, 8118, 8120) sharing similarity to the bovine Rho GDP dissociation inhibitor (GDI) have been identified in the human two-dimentional-gel database of keratinocyte proteins. Molecular cloning of the corresponding cDNAs showed that IEF 8118 is the human homolog of bovine GDI while IEF 8120 is a distinct although related protein. All available information indicates the IEF 1120 is a derivative of IEF 8120. The cDNAs coding for IEF's 8118 and 8120 were recombined into vaccinia virus and expressed in differentiated human keratinocytes and their effect on the actin cytoskeleton was assessed by immunofluorescence using TRITC-phalloidin. The results showed that overexpression of both GDI proteins leads to rounding up of the cells and loss of stress fibers and focal contact sites. In addition, the cell to cell adhesion belts gradually disappeared, an effect that was particularly pronounced in infected cells overexpressing IEF 8120. Taken together, the results imply that Rho GDI's play a role in modulating the activity of the Rho proteins as their overexpression mimics phenotypic changes associated with the inactivation of these proteins.  相似文献   

15.
Rab GTPases are localized to distinct subsets of organelles within the cell, where they regulate SNARE-mediated membrane trafficking between organelles. One factor required for Rab localization and function is Rab GDP dissociation inhibitor (GDI), which is proposed to recycle Rab after vesicle fusion by extracting Rab from the membrane and loading Rab onto newly formed transport intermediates. GDI is composed of two domains; Rab binding is mediated by Domain I, and the function of Domain II is not known. In this study, Domain II of yeast GDI, encoded by the essential GDI1/SEC19 gene, was targeted in a genetic screen to obtain mutants that might lend insight into the function of this domain. In one gdi1 mutant, the cytosolic pools of all Rabs tested were depleted, and Rab accumulated on membranes, suggesting that this mutant Gdi1 protein has a general defect in extraction of Rab from membranes. In a second gdi1 mutant, the endosomal/vacuolar Rabs Vps21/Ypt51p and Ypt7p accumulated in the cytosol bound to Gdi1p, but localization of Ypt1p and Sec4p were not significantly affected. Using an in vitro assay which reconstitutes Gdi1p-mediated membrane loading of Rab, this mutant Gdi1p was found to be defective in loading of Vps21p but not Ypt1p. Loading of Vps21p by loading-defective Gdi1p was restored when acceptor membranes prepared from a deletion strain lacking Vps21p were used. These results suggest that membrane-associated Rab may regulate recruitment of GDI-Rab from the cytosol, possibly by regulating a GDI-Rab receptor. We conclude that Domain II of Gdi1p is essential for Rab loading and Rab extraction, and confirm that each of these activities is required for Gdi1p function in vivo.  相似文献   

16.
The GTP/GDP conformational switch of members of the rab family of ras-related GTP-ases control specific intracellular vesicle transport pathways. We report the crystallization of the late-endosomal rab protein rab7, in both GTP and GDP conformations. X-ray data from crystals of rab71–207GppNHp (i.e., intact rab7, without C-terminal bound lipid, complexed with a non-hydrolysable GTP analog), rab71–197GppNHp and rab71–197GDP were collected to 1.9Å (0°C), 1.76Å (100°K) and 1.75Å (100°K) respectively. Rab7-GDP crystals diffract to at least 1.35Å. © 1997 Wiley-Liss, Inc.  相似文献   

17.
18.
The function of Rab24 is currently unknown, but other members of the Rab GTPase family are known to participate in various protein trafficking pathways. Rab proteins are thought to cycle on and off vesicle membranes in conjunction with changes in their guanine nucleotide state. The present studies indicate that Rab24 possesses several unusual characteristics that distinguish it from other Rab proteins. 1) Based on [(32)P]orthophosphate labeling of protein-bound nucleotide, Rab24 exists predominantly in the GTP state when expressed in cultured cells. The low GTPase activity is related to the presence of serine instead of glutamine at the position cognate to Ras Gln-61. 2) Posttranslational geranylgeranylation of Rab24, determined by metabolic labeling or detergent partitioning assays, is inefficient when compared with other Rabs ending with the common CXC and CC carboxyl-terminal motifs. This is partly due to the presence of two histidines distal to the target cysteines, but also involves other unidentified features. 3) Most of the Rab24 in the cytoplasmic compartment of cultured cells is not associated with Rab GDP dissociation inhibitors. These findings indicate that, if Rab24 functions in vesicular transport processes, it may operate through a novel mechanism that does not depend on GTP hydrolysis or GDP dissociation inhibitor-mediated recycling.  相似文献   

19.
We have previously demonstrated that Rab27 regulates dense granule secretion in platelets. Here, we analyzed the activation status of Rab27 using the thin layer chromatography method analyzing nucleotides bound to immunoprecipitated Rab27 and the pull-down method quantifying Rab27 bound to the GTP-Rab27-binding domain (synaptotagmin-like protein (Slp)-homology domain) of its specific effector, Slac2-b. We found that Rab27 was predominantly present in the GTP-bound form in unstimulated platelets due to constitutive GDP/GTP exchange activity. The GTP-bound Rab27 level drastically decreased due to enhanced GTP hydrolysis activity upon granule secretion. In permeabilized platelets, increase of Ca(2+) concentration induced dense granule secretion with concomitant decrease of GTP-Rab27, whereas in non-hydrolyzable GTP analogue GppNHp (beta-gamma-imidoguanosine 5'-triphosphate)-loaded permeabilized platelets, the GTP (GppNHp)-Rab27 level did not decrease upon the Ca(2+)-induced secretion. These data suggested that GTP hydrolysis of Rab27 was not necessary for inducing the secretion. Taken together, Rab27 is maintained in the active status in unstimulated platelets, which could function to keep dense granules in a preparative status for secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号