首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral mobility of AMPA-type glutamate receptors as well as their trafficking between plasma membrane and intracellular compartments are major mechanisms for the regulation of synaptic plasticity. Here we applied a recently established labeling technique in combination with lentiviral expression in hippocampal neurons to label individual ACP-tagged AMPA receptor subunits specifically at the surface of neurons. We show that this technique allows the differential labeling of two receptor subunits on the same cell. Moreover, these subunits are integrated into heteromeric receptors together with endogenous subunits, and these labeled receptors are targeted to active synapses. Sequential labeling experiments indicate that there is basal surface insertion of GluR1, GluR2 and GluR3, and that this insertion is strongly increased following potassium depolarization. Moreover, we found that ACP-labeled GluR3 shows the highest surface mobility among GluR1, GluR2, and GluR3. In double-infected neurons the diffusion coefficient of labeled GluR2 at the surface of living neurons is significantly higher in GluR2/GluR3-infected neurons compared to GluR1/GluR2-infected neurons suggesting a higher mobility of GluR2/3 receptors compared to GluR1/2 receptors. These results indicate that surface mobility is regulated by different subunit compositions of AMPA receptors.  相似文献   

2.
Excitotoxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has been proposed to play a major role in the selective death of motor neurons in sporadic amyotrophic lateral sclerosis (ALS), and motor neurons are more vulnerable to AMPA receptor-mediated excitotoxicity than are other neuronal subclasses. On the basis of the above evidence, we aimed to develop a rat model of ALS by the long-term activation of AMPA receptors through continuous infusion of kainic acid (KA), an AMPA receptor agonist, into the spinal subarachnoid space. These rats displayed a progressive motor-selective behavioral deficit with delayed loss of spinal motor neurons, mimicking the clinicopathological characteristics of ALS. These changes were significantly ameliorated by co-infusion with 6-nitro-7-sulfamobenso(f)quinoxaline-2,3-dione (NBQX), but not with d(-)-2-amino-5-phosphonovaleric acid (APV), and were exacerbated by co-infusion with cyclothiazide, indicative of an AMPA receptor-mediated mechanism. Among the four AMPA receptor subunits, expression of GluR3 mRNA was selectively up-regulated in motor neurons but not in dorsal horn neurons of the KA-infused rats. The up-regulation of GluR3 mRNA in this model may cause a molecular change that induces the selective vulnerability of motor neurons to KA by increasing the proportion of GluR2-lacking (i.e. calcium-permeable) AMPA receptors. This rat model may be useful in investigating ALS etiology.  相似文献   

3.
In recent years, a role for AMPA receptors as modulators of presynaptic functions has emerged. We have investigated the presence of AMPA receptor subunits and the possible dynamic control of their surface exposure at the presynaptic membrane. We demonstrate that the AMPA receptor subunits GluR1 and GluR2 are expressed and organized in functional receptors in axonal growth cones of hippocampal neurons. AMPA receptors are actively internalized upon activation and recruited to the surface upon depolarization. Pretreatment of cultures with botulinum toxin E or tetanus toxin prevents the receptor insertion into the plasma membrane, whereas treatment with alpha-latrotoxin enhances the surface exposure of GluR2, both in growth cones of cultured neurons and in brain synaptosomes. Purification of small synaptic vesicles through controlled-pore glass chromatography, revealed that both GluR2 and GluR1, but not the GluR2 interacting protein GRIP, copurify with synaptic vesicles. These data indicate that, at steady state, a major pool of AMPA receptor subunits reside in synaptic vesicle membranes and can be recruited to the presynaptic membrane as functional receptors in response to depolarization.  相似文献   

4.
In hippocampal neurons, the exocytotic process of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors is known to depend on activation of N-methyl-d-aspartate channels and its resultant Ca(2+) influx from extracellular spaces. Here we found that brain-derived neurotrophic factor (BDNF) induced a rapid surface translocation of AMPA receptors in an activity-independent manner in developing neocortical neurons. The receptor translocation became evident within hours as monitored by [(3)H]AMPA binding and was resistant against ionotropic glutamate receptor antagonists as evidenced with surface biotinylation assay. This process required intracellular Ca(2+) and was inhibited by the blockers of conventional exocytosis, brefeldin A, botulinum toxin B, and N-ethylmaleimide. To explore the translocation mechanism of individual AMPA receptor subunits, we utilized the human embryonic kidney (HEK) 293 cells carrying the BDNF receptor TrkB. After the single transfection of GluR2 cDNA or GluR1 cDNA into HEK/TrkB cells, BDNF triggered the translocation of GluR2 but not that of GluR1. Subsequent mutation analysis of GluR2 carboxyl-terminal region indicated that the translocation of GluR2 subunit in HEK293 cells involved its N-ethylmaleimide-sensitive factor-binding domain but not its PDZ-interacting site. Following co-transfection of GluR1 and GluR2 cDNAs, solid phase cell sorting revealed that GluR1 subunits were also able to translocate to the cell surface in response to BDNF. An immunoprecipitation assay confirmed that BDNF stimulation can enhance the interaction of GluR2 with N-ethylmaleimide-sensitive factor. These results reveal a novel role of BDNF in regulating the surface expression of AMPA receptors through a GluR2-NSF interaction.  相似文献   

5.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustatory primary neurons in the ganglion that innervates the anterior tongue (geniculate ganglion). AMPA and NMDA type subunits were immunohistochemically detected with antibodies against GluR1, GluR2, GluR2/3, GluR4 and NR1 subunits. Gustatory neurons were specifically identified by retrograde tracing with fluorogold from injections made into the anterior portion of the tongue. Most gustatory neurons in the geniculate ganglion were strongly immunoreactive for GluR2/3 (68%), GluR4 (78%) or NR1 (71%). GluR1 was seen in few cells (16%). We further examined if glutamate receptors were present in the peripheral terminals of primary gustatory neurons in taste buds. Many axonal varicosities in fungiform and vallate taste buds were immunoreactive for GluR2/3 but not for NR1. We conclude that gustatory neurons express glutamate receptors and that glutamate receptors of the AMPA type are likely targeted to synapses within taste buds.  相似文献   

6.
AMPA receptor subunits expressed by single Purkinje cells.   总被引:27,自引:0,他引:27  
Several subunits of the glutamate receptor of the AMPA subtype have been cloned recently. These subunits, named GluR1, GluR2, GluR3, and GluR4, exist as two splicing variants (flip and flop). We have determined the subset of AMPA receptor subunits expressed by single cerebellar Purkinje cells in culture. This was achieved by combining whole-cell patch-clamp recordings and a molecular analysis, based on the polymerase chain reaction, of the messenger RNAs harvested into the patch pipette at the end of each recording. We found that each single cell expresses the messenger RNAs encoding the following five subunits: the flip and flop versions of GluR1 and GluR2 as well as GluR3flip, GluR2 being the most abundant. In addition, GluR3flop and GluR4flip were scarcely expressed in half of these neurons, and GluR4flop was never detected.  相似文献   

7.
8.
9.
The dynamics of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors, as represented by their exocytosis, endocytosis and cytoskeletal linkage, has often been implicated in N-methyl-d-aspartate (NMDA)-dependent synaptic plasticity. To explore the molecular mechanisms underlying the AMPA receptor dynamics, cultured hippocampal neurons were stimulated with 100 microm NMDA, and the biochemical and pharmacological changes in the ligand binding activity of AMPA receptor complexes and its subunits, GluR1 and GluR2/3, were investigated. The NMDA treatment reduced the total amount of bound [(3)H]AMPA on the surface of the neurons but not in their total membrane fraction. This process was mimicked by a protein kinase C activator, phorbol ester, but blocked by an inhibitor of the same kinase, calphostin C. The NMDA-induced down-regulation of the ligand binding activity was also reflected by the decreased AMPA-triggered channel activity as well as by the cells' reduced immunoreactivity for GluR1. In parallel, the NMDA treatment markedly altered the interaction between the AMPA receptor subunits and their associating molecule(s); the association of PDZ molecules, including Pick1, with GluR2/3 was enhanced in a protein-kinase-C-dependent manner. Viral expression vectors carrying GluR1 and GluR2 C-terminal decoys, both fused to enhanced green fluorescent protein, were transfected into hippocampal neurons to disrupt their interactions. The overexpression of the C-terminal decoy for GluR2 specifically and significantly blocked the NMDA-triggered reduction in [(3)H]AMPA binding, whereas that for GluR1 had no effects. Co-immunoprecipitation using anti-Pick1 antibodies revealed that the overexpressed GluR2 C-terminal decoy indeed prevented Pick1 from interacting with the endogenous GluR2/3. Therefore, these observations suggest that the NMDA-induced down-regulation of the functional AMPA receptors involves the interaction between GluR2/3 subunits and Pick1.  相似文献   

10.
Abstract: Homomeric AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors (GluRs) were stably expressed in kidney cells from cDNAs encoding GluR1 flop, GluR2 flip, GluR2 flop, and GluR3 flop subunits. The recombinant receptors were of the expected size and showed functional properties in whole-cell recording as previously reported. [3H]AMPA binding to all subunits was increased to a similar extent by the chaotropic ion thiocyanate (SCN?). Significant differences were found in the Scatchard plots, however, which were linear and of high affinity for GluR1 and -3 receptors (KD values of 33 and 52 nM, respectively) but showed curvature for GluR2 receptors, indicating the presence of two components with distinct affinities. As with brain AMPA receptors, solubilization of GluR2 receptors reduced the number of lower-affinity sites and correspondingly increased the number of higher-affinity sites. The sulfhydryl reagent p-chloromercuriphenylsulfonic acid, which increases binding to brain receptors, produced only minor changes except in the case of GluR2 flip. These results indicate that GluR2, among the subunits examined here, most closely resembles the native AMPA receptors in brain membranes. [3H]AMPA binding was inhibited in a noncompetitive manner by two drugs that change the desensitization kinetics of the AMPA receptor. In agreement with physiological observations, the apparent affinity of cyclothiazide for GluR2 flip (EC50 = 7 µM) was higher than that for receptors made of flop subunits (49–130 µM). In contrast, BDP-37, a member of the benzamide family of drugs, exhibited a lower potency for GluR2 flip (58 µM) than for any of the flop isoforms (18–40 µM). These results predict that the action of centrally active AMPA-receptor modulators varies across brain regions depending on their flip/flop composition.  相似文献   

11.
Lee SH  Simonetta A  Sheng M 《Neuron》2004,43(2):221-236
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced internalization, homomeric GluR2 enters the recycling pathway, but following NMDA, GluR2 is diverted to late endosomes/lysosomes. In contrast, GluR1 remains in the recycling pathway, and GluR3 is targeted to lysosomes regardless of NMDA receptor activation. Interaction with NSF plays a role in regulated lysosomal targeting of GluR2. GluR1/GluR2 heteromeric receptors behave like GluR2 homomers, and endogenous AMPA receptors show differential activity-dependent sorting similar to homomeric GluR2. Thus, GluR2 is a key subunit that controls recycling and degradation of AMPA receptors after internalization.  相似文献   

12.
Trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors to and from the postsynaptic membrane plays an important role in regulating transmission at excitatory synapses. AMPA receptor subunits contain a large extracellular N-terminal domain that is important for receptor assembly (). To further investigate the determinants of receptor assembly and surface expression, we have epitope-tagged the N-terminal domain of the AMPA receptor subunit, GluR1, and expressed it in human embryonic kidney 293 cells and hippocampal neurons. Full-length GluR1 was readily detected on the cell surface in both cell types. However, surface expression was profoundly decreased by deletion or replacement of nine amino acids in the extreme N terminus. Immunoprecipitation experiments demonstrated that the mutant GluR1 in which this sequence was deleted still interacts with GluR2, suggesting that mutant GluR1 is capable of at least partial assembly into heteromeric structures. The mutant forms of GluR1 co-localize with an endoplasmic reticulum marker suggesting that they are retained in this structure. These results suggest a specific function of a short sequence present in the N-terminal domain in controlling anterograde trafficking of ionotropic glutamate receptors.  相似文献   

13.
The mesencephalic trigeminal nucleus is composed of large (35-50 microns) pseudo-unipolar neurons. Closely associated with them are small (< 20 microns) multipolar neurons. An unique peculiarity of the pseudo-unipolar perikarya is that they receive synaptic input from various sources, which sets them apart from the dorsal root and cranial nerves sensory ganglia neurons. Whereas glutamate is the best neurotransmitter candidate in pseudo-unipolar neurons, glutamatergic input into them has not yet been reported. AMPA glutamate receptors are implicated in fast excitatory glutamatergic synaptic transmission. They have been localized ultrastructurally at postsynaptic sites. This study demonstrates that the pseudo-unipolar neurons of the mesencephalic trigeminal nucleus express AMPA glutamate receptor subunits, which indicates that these neurons receive glutamatergic input. Serial sections from the rostral pons and midbrain of Sprague-Dawley rats were immunostained with antibodies against C-terminus of AMPA receptor subunits: GluR1, GluR2/3, and GluR4. The immunoreaction was visualized with avidin-biotin-peroxidase/DAB for light and electron microscopy. With GluR1 antibody only the smallest multipolar neurons were recognized as immunopositive within the mesencephalic trigeminal nucleus. GluR2/3 stained the pseudo-unipolar neurons intensely within the entire rostro-caudal extent of the nucleus. In addition the former antibody stained small multipolar neurons within the mesencephalic trigeminal nucleus, though with somewhat larger dimensions than those immunoreactive for GluR1. Whereas the overall staining with GluR4 antibody was scant, those pseudo-unipolar neurons that were stained, were strongly stained. Furthermore, a considerable number of microglial cells within and surrounding the mesencephalic trigeminal nucleus displayed very intense immunoreactivity for GluR4. These results are discussed in the light of the glutamate receptor subunit composition.  相似文献   

14.
15.
To identify proteins that interact with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, we carried out coimmunoprecipitation analyses on detergent-solubilized rat forebrain membranes. Membranes were solubilized with Triton X-100, and immunoprecipitation was done using subunit-specific antibodies to GluR1, GluR2/3, and GluR4 attached to protein Aagarose. Proteins bound to the antibodies were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining and western blotting. With solubilization in low ionic strength buffer, several coimmunoprecipitating proteins, with Mr = 17,000-100,000, were identified in silver-stained gels. Western blots were then probed with antibodies to a series of candidate proteins that were chosen based on the molecular masses of the copurifying proteins. Two of these were identified as the molecular chaperones calnexin (90 kDa) and the immunoglobulin binding protein (BiP; 78 kDa). Immunoprecipitation with antibodies to calnexin and BiP demonstrated that glycosylated AMPA receptor subunits were associated. The relationship between AMPA receptors and calnexin and BiP was further studied with immunocytochemistry of the hippocampus. Both calnexin and BiP labeling was present not only in the cell body but also in dendrites of hippocampal pyramidal neurons, where double-label immunofluorescence also showed the presence of AMPA receptor subunits.  相似文献   

16.
Summary 1. Glutamate is one of the main neurotransmitters in the retina. Its effects are mediated by a large number of ionotropic and metabotropic receptors. 2. The distribution of ionotropic AMPA receptor subunits GluR1–4, kainate receptor subunits GluR5–7 and KA2, as well as delta receptors 1–2 was studied in turtle retina. Indirect immunofluorescence was used to localize the different receptor subunits viewed using light microscopy. 3. Results show that all subunits, with excerption of GluR1 and GluR5, are widely distributed in the turtle retina. 4. They are mainly located in the both plexiform layers of the retina where punctate staining, a sign for synaptic localization, is observed. 5. The vast majority of the subunits possess specific pattern of staining that allow to suppose that they are involved in different retinal circuits. 6. It can be assumed that the GluR2/3 and GluR6/7 subunits are expressed on the dendrites of a subpopulation of bipolar cells that are immunopositive for α-isoform of protein kinase C (PKCα). The GluR2/3 and GluR6/7 subunits are most probably used by the same PKCα immunopositive bipolar cells in their synaptic contacts with the third-order retinal neurons, the amacrine and ganglion cells.  相似文献   

17.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

18.
The physiological responses of AMPA receptors can be modulated through the differential expression of their subunits and by modifying their number at the cell surface. Here we have studied the expression of AMPA receptor subunits (GluR1-4) mRNAs in cerebellar granule cells grown in depolarizing (25 mM K+) medium, and we have evaluated the effect of decreasing the [K+] in the culture medium for 24 h on both GluR1-4 expression (both mRNA and protein) and their presence at the plasma membrane. The expression of the four AMPAR subunits increases as the [K+] decreases, although the increase in GluR2 and GluR3 was only observed in the cell soma but not in the dendrites. Calcium entry through L-type calcium channel and CaMKIV activation are responsible for the reduction in the expression of AMPA receptor subunits in cells cultured in depolarizing conditions. Indeed, prolonged reduction of extracellular [K+] or blockage of L-type calcium channels enhanced both the surface insertion of the four AMPAR subunits and the AMPA response measured through intracellular calcium increase. These findings reveal a balanced increase in functional AMPA receptors at the surface of cells that can trigger strong increases in calcium in response to the persistent reduction of calcium entry.  相似文献   

19.
AMPA receptor-mediated neurotoxicity is currently the most plausible hypothesis for the etiology of amyotrophic lateral sclerosis (ALS). The mechanism initiating this type of neuronal death is believed to be exaggerated Ca2+-influx through AMPA receptors, which is critically determined by the presence or absence of the glutamate receptor subunit 2 (GluR2) in the assembly. We have provided the first quantitative measurements of the expression profile of AMPA receptor subunits mRNAs in human single neurons by means of quantitative RT-PCR with a laser microdissector. Among the AMPA subunits, GluR2 shared the vast majority throughout the neuronal subsets and tissues examined. Furthermore, both the expression level and the proportion of GluR2 mRNA in motoneurons were the lowest among all neuronal subsets examined, whereas those in motoneurons of ALS did not differ from the control group, implying that selective reduction of the GluR2 subunit cannot be a mechanism of AMPA receptor-mediated neurotoxicity in ALS. However, the low relative abundance of GluR2 might provide spinal motoneurons with conditions that are easily affected by changes of AMPA receptor properties including deficient GluR2 mRNA editing in ALS.  相似文献   

20.
The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号