首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The successful nodulation of legumes by a Rhizobium strain is determined by the competitive ability of that strain against the mixture of other native and inoculant rhizobia. Competition among six Leucaena rhizobial strains in single and multistrain inoculants were studied. Field inoculation trials were conducted in an oxisol and a mollisol soil, both of which contained indigenous Leucaena-nodulating rhizobia. Strain-specific fluorescent antibodies were used for the identification of the strains in Leucaena nodules. Mixtures of three recommended inoculum strains for Leucaena spp. (TAL82, TAL582, and TAL1145) were used in peat-based inocula either alone or with one of the three other strains isolated from the sites, B213, B214, and B215. Each of these latter three strains was also used as single-strain inocula to study their competition with the native rhizobia in the two soil systems. In the oxisol soil, strains B213 and B215, when used as single-strain inocula, outcompeted the native rhizobia and formed 92 and 62% of the nodules, respectively. Strain B214 was the least competitive in oxisol soil, where it formed 30% of the nodules, and the best in mollisol soil, where it formed 70% of the nodules. The most successful competitor for nodulation in multistrain inocula was strain TAL1145, which outcompeted native and other inoculum Leucaena rhizobia in both soils. None of the strains in single or multistrain inoculants was capable of completely overcoming the resident rhizobia, which formed 4 to 70% of the total nodules in oxisol soil and 12 to 72% in mollisol soil. No strong relationship was detected between the size of the rhizosphere population of a strain and its successful occupation of nodules.  相似文献   

2.
Three strains of Bradyrhizobium japonicum, I17, 110, and 61A76, were evaluated for their ability to form nodules on field-grown soybeans in soil with a highly competitive indigenous B. japonicum population. The predominant indigenous strain, 0336, in the field site used was unlike the more common isolates from Midwestern soils which belong to the 123 or 138 serogroups. This strain persisted in the soil for at least 30 years without any soybean crops. The three inoculant strains differed in their ability to compete with indigenous strains for nodule formation. Four different inoculation treatments were tested in three adjacent fields. When the amount of inoculum was increased, a higher proportion of nodules contained the inoculant strain. The most competitive inoculant strain was I17, a recent field isolate. Strain 61A76 was better than 110. There was no difference in recovery of the inoculant strains on the Hodgson or Corsoy soybean cultivars, nor was there a difference in recovery of the inoculant strains during the growing season. The vertical distribution of nodules containing the inoculant strains was affected by the method of adding the inoculant to the soil. Inoculant added to the seed furrow produced nodules mainly in the top region of the soybean root. Inoculant tilled into the soil produced nodules primarily in the bottom part of the root. The nodules that were produced in the bottom part of the root are younger and may contribute significant amounts of fixed nitrogen to the soybean during seed formation.  相似文献   

3.
To test whether Rhizobium loti are coadapted to nodulate local plant genotypes, we competed R. loti strains in a common environment with clonally propagated Lotus corniculatus. Both the plants and bacterial strains were originally collected from natural populations in three localities and the R. loti strains used were distinguishable by enzyme electrophoretic markers and differed in geographical origin relative to host plant origin. The proportions of nodules occupied by symbiont strains varied widely and depended on both host plant and symbiont genotype. Nonrandom nodulation patterns resulted primarily from preferential nodulation of host genotypes by the symbiont strain that had been associated with the host in the natural environment. Symbionts nodulating their original hosts were preferentially found in nodules on adventitious tap roots as opposed to the younger, lateral roots (for one host-symbiont pair) or in large nodules, independent of location on the root system (for a second host-symbiont pair). The proportion of nodules occupied by a symbiont on novel host genotypes varied, ranging from nearly random expectation to a significant reduction in the proportion of nodules occupied. The analysis of the bacteria recovered from 994 nodules by multilocus enzyme electrophoresis revealed that 952 (95.8%) nodules were occupied by one of the four inoculant strains and 11 (1.1%) were co-occupied by two inoculant strains. A total of 31 (3.1%) nodules were occupied by strains that did not match the electrophoretic profiles of the original inoculant strains. Based on the comparison of multilocus profiles for 23 enzyme loci, we concluded that these bacteria were foreign strains and not recombinants of the original inoculant strains. Our findings indicate a strong host genotype by strain interaction underlying the outcome of rhizobial competition for nodulation sites and suggest there are distinct mechanisms leading to differential recognition of compatible host and symbiont genotypes.  相似文献   

4.
Competition between indigenous Rhizobium leguminosarum biovar trifolii strains and inoculant strains or between mixtures of inoculant strains was assessed in field and growth-room studies. Strain effectiveness under competition was compared with strain performance in the absence of competition. Field inoculation trials were conducted at Elora, Ontario, Canada, with soil containing indigenous R. leguminosarum biovar trifolii. The indirect fluorescent-antibody technique was used for the identification of nodule occupants. Treatments consisted of 10 pure strains, a commercial peat inoculant containing a mixture of strains, and an uninoculated control. Inoculant strains occupied 17.5 to 85% of nodules and resulted in increased dry weight and nitrogen content, as compared with the uninoculated control. None of the strains was capable of completely overcoming resident rhizobia, which occupied, on average, 50% of the total nodules tested. In growth-room studies single commercial strains were mixed in all possible two-way combinations and assessed in a diallel mating design. Significant differences in plant dry weight of red clover were observed among strain combinations. Specific combining ability effects were significant at the 10% level, suggesting that the effectiveness of strain mixtures depended on the specific strain combinations. Strains possessing superior effectiveness and competitive abilities were identified by field and growth-room studies. No relationship was detected between strain effectiveness and competitive ability or between strain recovery and host cultivar. The concentration of indigenous populations was not considered to be a limiting factor in the recovery of introduced strains at this site.  相似文献   

5.
A field experiment was conducted to assess the response to inoculation with rhizobia in a clay loam soil of the Nile Delta using faba bean (Vicia faba) for two successive winter seasons (1985/6 and 1986/7). Three selected strains of Rhizobium leguminosarum, TAL 634, NRC 65 and TAL 1400, were used singly or in combination as peat-based inocula in 1985/6 winter season. Strain TAL 1400 was replaced by strain F9 in the 1986/7 winter season. A significant seed yield response was obtained only with strain TAL 1400, in the 1985/6 season. In the 1986/7 season, no significant yield response was observed with any of the strains. The serotyping of nodules collected in the 1985/6 season showed that strain TAL 1400 was more competitive than either the indigenous rhizobia or the two inoculant strains. However, the majority of nodules formed in the 1986/7 season were formed from strains other than the inoculant ones.  相似文献   

6.
Rhizobium strains used in inoculants for Trifolium spp., Medicago spp., Glycine max, and Lotus pedunculatus were isolated from nodules of these legumes grown in soils into which the rhizobia had been introduced 4 to 8 years before. Isolations were made from a total of 420 nodules. Nodule occupancy by the inoculant strains varied from 17.7% for a soybean strain to 100% in the case of L. pedunculatus whose specific rhizobia did not occur in the soils studied. In general, inoculant strains isolated from nodules did not differ in effectiveness from cultures of the same strains concurrently maintained in lyophilized form. The average effectiveness of all of the isolates (identified and unidentified) from a legume was 7.1 to 73.3% higher than that of the unidentified isolates alone, demonstrating the prolonged effect that a single-seed inoculation has on the rhizobial population in a soil which had not been planted with legumes before. Relatively weak recovery of a Rhizobium japonicum strain introduced into soil 4 years after soybean seed inoculated with a different strain had been planted in the same soil confirmed the advantage of a resident population over an introduced inoculant strain.  相似文献   

7.
The effect of several biotic and abiotic factors on the pattern of competition between two strains of Rhizobium japonicum was examined. In two Minnesota soils, Waseca and Waukegan, strain USDA 123 occupied 69% (Waseca) and 24% (Waukegan) of the root nodules on Glycine max L. Merrill cv. Chippewa. USDA 110 occupied 2% of the root nodules in the Waseca soil and 12% of the nodules in the Waukegan soil. Under a variety of other growth conditions—vermiculite, vermiculite amended with Waseca soil, and two Hawaiian soils devoid of naturalized Rhizobium japonicum strains—USDA 110 was more competitive than USDA 123. The addition of nitrate to or the presence of antibiotic-producing actinomycetes in the rhizosphere of soybeans did not affect the pattern of competition between the two strains. However, preexposure of young seedings to USDA 110 or USDA 123 before transplantation into soil altered the pattern of competition between the two strains significantly. In the Waseca soil, preexposure of cv. Chippewa to USDA 110 for 72 h increased the percentage of nodules occupied by USDA 110 from 2 to 55%. Similarly, in the Hawaiian soil Waimea, nodule occupancy by USDA 123 increased from 7 to 33% after a 72-h preexposure.  相似文献   

8.
The displacement of indigenous Bradyrhizobium japonicum in soybean nodules with more effective strains offers the possibility of enhanced N2 fixation in soybean (Glycine max (L.) Merr.). Our objective was to determine whether the wild soybean (G. soja Sieb. & Zucc.) genotype PI 468397 would cause reduced competitiveness of important indigenous B. japonicum strains USDA 31, 76, and 123 and thereby permit nodulation by Rhizobium fredii, the fast-growing microsymbiont of soybean. In an initial experiment, PI 468397 nodulated and fixed moderate amounts of N2 with USDA 31 and 76 but, despite the formation of nodules, fixed essentially no N2 with USDA 123. In contrast, PI 468397 formed a highly effective symbiosis with R. fredii strain USDA 193. In two subsequent experiments, Williams soybean and PI 468397 were grown in a pasteurized soil mixture or in soybean rhizobium-free soil and inoculated with both USDA 123 and USDA 193. In each experiment, more than 90% of the nodules of Williams contained USDA 123, while only a maximum of 2% were occupied with USDA 193. In contrast, in the two experiments, 16 and 11%, respectively, of the nodules produced on PI 468397 were occupied by USDA 123, while in both experiments 87% contained USDA 193. Thus, in relation to the cultivar Williams, which is commonly grown and used as a parent in soybean breeding programs in the United States, PI 468397 substantially reduced the competitive ability of B. japonicum strain USDA 123 in relation to R. fredii strain USDA 193.  相似文献   

9.
Competition from native soil rhizobia is likely to be an important factor limiting Phaseolus vulgaris L. inoculant response in Latin America. We used UMR 1116, a nod + fix natural mutant of Rhizobium leguminosarum bv phaseoli strain CC511, as a reference strain to study competition for nodulation sites in this species. When P. vulgaris cv Carioca was planted in soils containing different proportions of UMR 1116 and the effective and competitive strain UMR 1899, UMR 1116 occupied more than 50% of the nodules at all inoculant ratios tested, though increasing the proportion of UMR 1899 in the inoculant did enhance the number and percentage of effective nodules and plant dry weight. Sixty two strains of bean rhizobia were tested in competition with UMR 1116. An inoculant ratio of 1:1 was used, with all strains applied to the soil rather than to seeds. Strains varied in the number and percentage of effective nodules produced in competition with UMR 1116, and in plant dry weight, and there was a strong correlation between variation in each of these traits and plant N accumulation. Seven of the strains (UMR 1073, 1084, 1102, 1125, 1165, 1378 and 1384) were identified as both superior in competitive ability and active in N2 fixation. Site of placement of the inoculant and ambient temperature influenced strain response.Journal paper 16736, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

10.
The symbiotic effectiveness and nodulation competitiveness of Rhizobium leguminosarum bv. trifolii soil isolates were evaluated under nonsoil greenhouse conditions. The isolates which we used represented both major and minor nodule-occupying chromosomal types (electrophoretic types [ETs]) recovered from field-grown subclover (Trifolium subterraneum L.). Isolates representing four ETs (ETs 2, 3, 7, and 8) that were highly successful field nodule occupants fixed between 2- and 10-fold less nitrogen and produced lower herbage dry weights and first-harvest herbage protein concentrations than isolates that were minor nodule occupants of field-grown plants. Despite their equivalent levels of abundance in nodules on field-grown subclover plants, ET 2 and 3 isolates exhibited different competitive nodulation potentials under nonsoil greenhouse conditions. ET 3 isolates generally occupied more subclover nodules than isolates belonging to other ETs when the isolates were mixed in 1:1 inoculant ratios and inoculated onto seedlings. In contrast, ET 2 isolates were less successful at nodulating under these conditions. In many cases, ET 2 isolates required a numerical advantage of at least 6:1 to 11:1 to occupy significantly more nodules than their competitors. We identified highly effective isolates that were as competitive as the ET 3 isolates despite representing serotypes that were rarely recovered from nodules of field-grown plants. When one of the suboptimally effective isolates (ET2-1) competed with an effective and competitive isolate (ET31-5) at several different inoculant ratios, the percentages of nodules occupied by the former increased as its numerical advantage increased. Although subclover yields declined as nodule occupancy by ET2-1 increased, surprisingly, this occurred at inoculant ratios at which large percentages of nodules were still occupied by ET31-5.  相似文献   

11.
In the American Midwest, superior inoculant rhizobia applied to soybeans usually occupy only 5 to 20% of nodules, and response to inoculation is the exception rather than the rule. Attempts to overcome this problem have met with limited success. We evaluated the ability of Bradyrhizobium japonicum, supplied as a seed coat inoculant, to stay abreast of the infectible region of the developing soybean root system. The rhizoplane population of the inoculant strain declined with distance from site of placement, the decrease being more pronounced on lateral than on taproots. This decline was paralleled by a decrease in inoculant-strain nodule occupancy. Inoculant bradyrhizobia contributed little to nodulation of lateral roots, which at pod-fill accounted for more than 50% of nodule number and mass, and were major contributors to acetylene reduction activity. From these data, it appears that inoculant bradyrhizobia are competitive with indigenous soil strains at the point of placement in the soil but have limited mobility and so are incapable of sustaining high populations throughout the developing root system. The result is low nodule occupancy by the inoculant strain in the tapand lateral roots. Future studies should address aspects of inoculant placement and establishment.  相似文献   

12.
J. Evans 《Plant and Soil》1982,66(3):439-442
Summary The effect of mineral nitrogen on establishment and activity of symbioses between soybean and several strains ofRhizobium japonicum and on the establishment of nodules ofR. japonicum isolated from nodules of field crops is studied. All strains were highly susceptible to the effects of 200 ppm NO3–N on the establishment of symbiosis; 50 ppm NO3–N had little effect. Response of symbioses establishhed in the absence of mineral N to short term exposure to nitrate or ammonium varied significantly between strains. Nodule isolates from soybean crops growing in nitrifying soil were no less susceptible to the inhibitory effects of mineral N on nodule formation than a laboratory culture of the commercial inoculant strain.  相似文献   

13.
One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis was a more discriminating method than serotyping for identifying strains of Bradyrhizobium japonicum. Analysis of 543 nodule isolates from southeastern Wisconsin soybean farms revealed that none of the isolates were formed by any of the inoculant strains supplied by either of two inoculant companies. Twenty-nine indigenous strains and six inoculant strains were identified. Strain 61A76, the most competitive indigenous strain, formed 21% of the nodules. Indigenous strains 3030, 3058, 0336, and 3052 formed 15, 11, 9, and 9% of the nodules, respectively. These predominant strains were not associated with a particular soybean cultivar, soil type, or farm location.  相似文献   

14.
In the American Midwest, superior N2-fixing inoculant strains of Bradyrhizobium japonicum consistently fail to produce the majority of nodules on the roots of field-grown soybean. Poor nodulation by inoculant strains is partly due to their inability to stay abreast of the expanding soybean root system in numbers sufficient for them to be competitive with indigenous bradyrhizobia. However, certain strains are noncompetitive even when numerical dominance is not a factor. In this study, we tested the hypothesis that the nodule occupancy achieved by strains is related to their nodule-forming efficiency. The nodulation characteristics and competitiveness of nine strains of B. japonicum were compared at both 20 and 30°C. The root tip marking technique was used, with the nodule-forming efficiency of each strain estimated from the average position of the uppermost nodule and the number of nodules formed above the root tip mark. The competitiveness of the nine strains relative to B. japonicum USDA 110 was determined by using immunofluorescence to identify nodule occupants. The strains differed significantly in competitiveness with USDA 110 and in nodulation characteristics, strains that were poor competitors usually proving to be inferior in both the average position of the uppermost root nodule and the number of nodules formed above the root tip mark. Thus, competitiveness was correlated with both the average position of the uppermost nodule (r = 0.5; P = 0.036) and the number of nodules formed above the root tip mark (r = 0.64; P = 0.005), while the position of the uppermost nodule was also correlated to the percentage of plants nodulated above the root tip mark (r = 0.81; P < 0.001) and the percentage of plants nodulated on the taproot (r = 0.67; P = 0.002).  相似文献   

15.
Soil Bradyrhizobium populations limit nodule occupancy of soybean by symbiotically-superior inoculant strains throughout much of the American midwest. In this study, the competitiveness of indigenous populations of B. japonicum serocluster 123 from Waukegan and Webster soils was evaluated in growth pouches using a root-tip marking procedure. The native rhizobia were from soils incubated 0–8 h in soybean root exudate (SRE) or plant nutrient solution (PNS) prior to inoculation. Populations of serocluster 123 strains in soil and nodule occupancy by these strains were assessed using fluorescent antibodies prepared against B. japonicum USDA 123. There were no significant differences in populations that came from SRE or PNS incubated soils: both populations increased in number over the incubation period. Nodule occupancy by both populations in growth pouches was similar to that previously encountered in field studies with these two soils. With the Waukegan soil, the serocluster 123 population dominated nodulation forming 69 and 62% of taproot nodules above and below the root tip mark, respectively. However, for the more alkaline Webster soil, serocluster 123 strains were much less competitive, producing only 9 and 13%, respectively, of the nodules formed above and below the root tip mark. In growth pouches, soil populations of bradyrhizobia from the Webster soil produced significantly more nodules than those from the Waukegan soil, but both strains and a pure culture of USDA 110 had a similar distribution of nodules.  相似文献   

16.
Organic farmers recognize the importance of rhizobial associations with legume plants to help meet N fertility and plant productivity needs. A field experiment was done at three organic fields in Minnesota to assess the effect of indigenous Bradyrhizobium japonicum ORGS3 and ORGS5 and reference USDA 110 strains on the growth and yield performance of soybean. Soybean genotypes MN1505SP and Lambert inoculated with B. japonicum ORGS3 had significantly greater (P < 0.01) nodule numbers (42.1 ± 2.5), herbage N-contents (4.02 ± 0.01%), dry biomass (12.60 ± 1.45 g), and plant populations (117,890 ± 288.13 plant/acre) compared with the un-inoculated control. Grain yields were not affected by inoculation. Most nodules formed on non-inoculated Lambert (70%) and MN1505SP (53%) were occupied by strain ORGS5. The inoculant strains USDA110 and ORGS5 increased nodule occupancy by 10% on MN1505SP and Lambert. In contrast, strain ORGS3, and the combination of strains ORGS5 plus ORGS3, increased nodules occupancy on Lambert by 23 and 20%, respectively, compared with the control. The majority of nodules on Lambert (59%) and MN1505SP (52%) in the Farmington and Lamberton fields, respectively, were occupied by ORGS5. In contrast, 41 and 45% of nodules formed on Lambert and MN1505SP at Rosemount, respectively, were occupied by strain ORGS3. The lowest percentage of nodules formed on Lambert (4%) and MN1505SP (5%), in the Farmington field, were occupied by USDA110. These results showed that Bradyrhizobium strains ORGS3 and ORGS5 can be used to enhance N fixation and productivity of organically-grown soybeans grown in Minnesota fields.  相似文献   

17.
Competitiveness for nodulation is a desirable trait in rhizobia strains used as inoculant. In Sinorhizobium meliloti 1021 mutation in either of the trehalose utilization genes thuA or thuB influences its competitiveness for root colonization and nodule occupancy depending on the interacting host. We have therefore investigated whether mutation in the thuA ortholog in Mesorhizobium loti MAFF303099 also leads to a similar competitive phenotype on its hosts. The results show that M. loti thuA mutant Ml7023 was symbiotically effective and was as competitive as the wild type in colonization and nodule occupancy on Lotus corniculatus and Lotus japonicus. The thuA gene in M. loti was not induced during root colonization or in the infection threads unlike in S. meliloti, despite its induction by trehalose and high osmolarity in in vitro assays.  相似文献   

18.
The root nodule locations of six Bradyrhizobium japonicum strains were examined to determine if there were any differences which might explain their varying competitiveness for nodule occupancy on Glycine max. When five strains were added to soybeans in plastic growth pouches in equal proportions with a reference strain (U.S. Department of Agriculture, strain 110), North Carolina strain 1028 and strain 110 were the most competitive for nodule occupancy, followed by U.S. Department of Agriculture strains 122, 76, and 31 and Brazil strain 587. Among all strains, nodule double occupancy was 17% at a high inoculum level (107 CFU pouch−1) and 2% at a low inoculum level (104 CFU pouch−1). The less competitive strains increased their nodule representation by an increase in the doubly occupied nodules at the high inoculum level. Among all strains, the number of taproot and lateral root nodules was inversely related at both the high and low inoculum levels (r = −0.62 and −0.69, respectively; P = 0.0001). This inverse relationship appeared to be a result of the plant host control of bacterial infection. Among each of the six strains, greater than 95% of the taproot nodules formed at the high inoculum density were located on 25% of the taproot length, the nodules centering on the position of the root tip at the time of inoculation. No differences among the six strains were observed in nodule initiation rates as measured by taproot nodule position. Taproot nodules were formed in the symbiosis before lateral root nodules. One of the poorly competitive strains (strain 76) occupied three times as many taproot nodules as lateral root nodules when competing with strain 110 (nodules were harvested from 4-week-old plants). Among these six wild-type strains of B. japonicum, competitive ability evidently is not related to nodule initiation rates.  相似文献   

19.
The symbiotic and competitive performances of two highly effective rhizobia nodulating French bean P. vulgaris were studied in silty loam and clayey soils. The experiments were carried out to address the performance of two rhizobia strains (CE3 and Ph. 163] and the mixture thereof with the two major cultivated bean cultivars in two soil types from major growing French bean areas in Egypt. Clay and silty loam soils from Menoufia and Ismailia respectively were planted with Bronco and Giza 6 phaseolus bean cultivars. The data obtained from this study indicated that rhizobial inoculation of Giza 6 cultivar in clayey soil showed a positive response to inoculation in terms of nodule numbers and dry weight. This response was also positive in dry matter and biomass accumulation by the plants. The inoculant of strain CE3 enhanced plant growth and N-uptake relative to Ph. 163. However, the mixed inoculant strains were not always as good as single strain inoculants. The competition for nodulation was assessed using two techniques namely fluorescent antibody testing (FA) and REP-PCR fingerprinting. The nodule occupancy by inoculant strain Ph. 163 in both soils occupied 30-40% and 38-50 of nodules of cultivar Bronco. The mixed inocula resulted in higher proportions of nodules containing CE3 in silty loam soil and Ph. 163 in clayey soil. The native rhizobia occupied at least 50% of the nodules on the Bronco cultivar. For cultivar Giza 6, the native rhizobia were more competitive with the inoculant strains. Therefore, we suggest using the studied strains as commercial inocula for phaseolus bean.  相似文献   

20.
Bradyrhizobium strains isolated from the nonlegume Parasponia spp. formed a group of strains that were highly competitive for nodulation of P. andersonii when paired with strains isolated from legumes. Strains from legumes, including those of similar effectiveness to NGR231 and CP283, were not able to form nodules as single occupants on P. andersonii in the presence of Parasponia strains. However, NGR86, an isolate from Macroptilium lathyroides, jointly occupied one-third of the nodules formed with each of the three strains isolated from Parasponia spp. Time taken for nodules to appear may have influenced the outcome of competition, since CP283 and all isolates from legumes were slow to nodulate P. andersonii. Among the Parasponia strains, competitiveness for nodulation of P. andersonii was not associated with effectiveness of nitrogen fixation. The highly effective strain CP299 was a poor competitor when paired with the least effective strain NGR231. CP283 was the least competitive of the Parasponia strains but was still able to dominate nodules when paired with legume isolates. Dual occupancy was high, up to 67% when the inoculum contained CP299 and CP273. Both the Muc+ and Muc- types of CP283 form a symbiosis of similar effectiveness and were similarly competitive at high inoculation densities, but the Muc- form was more competitive at low inoculum densities. Both forms frequently occupied the same nodule. Bradyrhizobium strains isolated from Parasponia spp. may have specific genetic information that favor their ability to competitively and effectively infect plants in the genus Parasponia (Ulmaceae) outside the Leguminosae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号