首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water-saving irrigation systems that have been developed to increase water-use efficiency (WUE) without significant yield reduction. In order to investigate whether a high-value horticultural crop such as tomato responded differently to RDI and PRD, we compared the physiological and growth responses of tomato plants using a split-root system. Plants were grown in a greenhouse under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: (i) Control, receiving an amount of water equivalent to 100% of plant transpiration; (ii) PRD, in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil and switching irrigation between sides weekly; and (iii) RDI, in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Leaf RWC and midday leaf Ψ decreased substantially in RDI-treated plants, while the PRD plants exhibited relatively higher Ψ and RWC values. Both PRD and RDI treatments reduced by about 30% the total plant dry mass compared with the control. However, plant transpiration was reduced by about 50% in both PRD and RDI, allowing a significant improvement in whole-plant WUE. Stomatal conductance (Gs) and leaf growth were also significantly reduced by PRD and RDI. These results may be related to a significant increase in xylem sap pH and leaf apoplastic pH. Generally, the photosynthetic apparatus of tomato leaves had a high resistance to restricted water availability. In fact, the decreased Gs had no major negative impact on carbon assimilation. However, V cmax, i.e. Rubisco efficiency, was significantly decreased in RDI plants with respect to control ones. This may imply that, although the differences between the PRD and RDI treatments in our study were subtle, they may become more marked with a more prolonged and severe water deficit.  相似文献   

2.
Water is an increasingly scarce resource worldwide and irrigated agriculture remains one of the largest and most inefficient users of this resource. Low water use efficiency (WUE) together with an increased competition for water resources with other sectors (e.g. tourism or industry) are forcing growers to adopt new irrigation and cultivation practices that use water more judiciously. In areas with dry and hot climates, drip irrigation and protected cultivation have improved WUE mainly by reducing runoff and evapotranspiration losses. However, complementary approaches are still needed to increase WUE in irrigated agriculture. Deficit irrigation strategies like regulated deficit irrigation or partial root drying have emerged as potential ways to increase water savings in agriculture by allowing crops to withstand mild water stress with no or only marginal decreases of yield and quality. Grapevine and several fruit tree crops seem to be well adapted to deficit irrigation, but other crops like vegetables tend not to cope so well due to losses in yield and quality. This paper aims at providing an overview of the physiological basis of deficit irrigation strategies and their potential for horticulture by describing the major consequences of their use to vegetative growth, yield and quality of different crops (fruits, vegetables and ornamentals).  相似文献   

3.
Soil moisture flux to root surface is considered the main determining factor of the transpiration intensity of plants. This assumption is valid not only in optimal plant physiological conditions without any physical barrier for the evaporation from the leaves, but in climatic drought as well, when high usable soil water amount cannot supply the evapo-transpiration intensity of plant. A new algorithm we built up describing the plant adaptation in climatic drought when stoma’s closure and reduction of plant’s potential evapo-transpiration (PET) starts. The adaptation algorithm of Doorenbos et al. (1978) is developed further defining that soil moisture content initiating the stomata’s closure. The critical soil moisture content is varying according to the PET, and drought tolerance of plant. If soil moisture content is less than the critical one, the plant evapo-transpiration (ET) can be highly different in the drought tolerance plant groups. The new drought tolerance algorithm is applied to maize field plots on chernozem soil of the experimental station of the Debrecen University, in East Hungary. Simulated soil water storages are compared to measured ones of a field plot treatment in five consecutive years. The soil moisture content profiles are measured with a BR-150 capacitance probe (Andrén et al. 1991). Differences between measured and simulated soil water storages are not significant in 2003. Simulations indicate low soil water storages in autumn of 2006, and in the first half of 2007 predicting the low maize production realized in 2007. The new plant adaptation algorithm can be used for a climate and soil moisture content sensitive irrigation control as well. The maize production is an illustrative biohydrological example of water flow through the soil-plant-atmosphere continuum.  相似文献   

4.
Abstract

We compared the effects of Partial Root-zone Drying (PRD) and Regulated Deficit Irrigation (RDI) on water relations, vegetative growth and antioxidant enzyme activities in two olive varieties Picholine marocaine (Pm) and Picholine languedoc (Pl). A split-root technique was used to divide the root system of the plants in two parts, placed in separate pots, and exposed simultaneously to different water regimes: (i) Control with both root compartments well-watered, (ii) PRD, with one compartment fully irrigated, while the other was kept dry, and (iii) RDI, with both compartments partially irrigated. Compared with the control, both PRD and RDI treatments resulted in decreased stomatal conductance (Gs), pre-dawn leaf water potential (ψpd) and relative water content (RWC). The PRD-treated plants of both varieties exhibited lower Gs, and higher ψpd and RWC compared with those exposed to RDI, although both treatments received the same amount of water. Plant vegetative growth was substantially reduced under both PRD and RDI compared with the control, as expressed by lower values of shoot length, leaf number and total leaf area. The enzymatic activities of superoxide dismutase, soluble peroxidase, insoluble peroxidase, and polyphenol oxidase were up-regulated by water deficits under PRD and RDI treatments, compared with the control.  相似文献   

5.
程莉  李玉霖  宁志英  杨红玲  詹瑾  姚博 《生态学报》2024,44(7):2688-2705
干旱最显著的影响表现在区域尺度的森林死亡事件中,可以在短时间内杀死数百万棵树木。鉴于未来极端干旱事件的频率和强度可能随温度的升高而增加,迫切需要明确树木对干旱胁迫的响应对策以及衰退死亡机理,揭示木本植物在干旱环境中存活和死亡的生理机制,了解树木在未来气候下的适应机制,提高预测树木对干旱反应的准确性。在常用植物功能性状的基础上,重点纳入与植物水分运输能力及耐旱性相关的水力学性状,系统总结了:1)植物木质部水分运输的物理机制;2)植物应对干旱胁迫的水力响应过程:3)干旱胁迫下木本植物水分利用对策;以及4)干旱胁迫下木本植物衰退/死亡机理。最后,提出3个尚待解决的主要问题:1)加强纳入水力性状阐明植物对干旱胁迫的响应和调节机制;2)加强从全株植物的角度考虑植物不同组织性状间的关系;3)深入探究树木干旱致死机理。  相似文献   

6.
为了明确华北严重缺水区晚播冬小麦灌水对根系时空分布和土壤水分利用规律的影响,以冬小麦石麦15为材料,利用田间定位试验研究了不同灌水处理(春季不灌水W0;春季灌拔节水75mm,W1;春季灌起身水、孕穗水和灌浆水共225mm,W3)对根系干重密度(DRWD)、根长密度(RLD)、体积密度、分枝数等在0—200cm土层的垂直分布、动态变化及其对耗水和产量的影响,结果表明:随着春季灌水量的减少,开花后0—80cm土层的根干重密度、根长度密度、体积密度和分枝数密度均显著减少,80cm—200m土层的根干重密度、根长度密度、体积密度和分枝数密度却显著增加,并且显著增加冬小麦在灌浆期间对100cm以下深层土层水分的利用,总耗水量W1和W0分别比W3减少70.9mm、115.1mm,土壤耗水量分别比W3增加79.1mm、108.9mm,子粒产量W1和W0分别比W3减少653.3kg/hm2、1470kg/hm2,水分利用效率(WUE)则分别比W3提高0.09kg/m3、0.06kg/m3。晚播冬小麦春季灌1水(拔节水)可以促进根系深扎,增加深土层的根系分布量,提高对深层土壤贮水的吸收利用量,有利于实现节水与高产的统一。  相似文献   

7.
园艺植物水分胁迫生理及耐旱机制研究进展   总被引:30,自引:2,他引:30  
概述了园艺植物在水分胁迫下的生理生化,分子反应及耐旱机制研究进展,并指出尚需进一步研究的问题。  相似文献   

8.
科学灌溉对植物种子生产具有重要意义。本研究以荒漠草原优良乡土植物沙芦草和牛枝子为对象,以充分灌溉为对照,探究不同生育时期亏缺灌溉对两种牧草种子生产和水分利用效率的影响。结果表明: 与对照相比,亏缺灌溉下两种植物土壤含水率下降,其中沙芦草土壤含水率下降主要发生在0~60 cm土层,牛枝子土壤水分下降未出现明显的分层现象。亏缺灌溉下沙芦草种子产量各构成因子差异均显著,开花期亏缺灌溉种子产量最高;牛枝子仅生殖枝数、小花数和荚果数差异显著,种子产量各处理差异不显著。相关分析显示,沙芦草种子产量与生殖枝数(r=0.776)、小穗数(r=0.717)呈显著正相关;牛枝子花序数与生殖枝数呈极显著负相关(r=-0.685),与小花数呈显著正相关(r=0.412)。与充分灌溉相比,亏缺灌溉下两种乡土植物种子生产耗水量减少,水分利用效率提高,其中,沙芦草开花期亏缺灌溉水分利用效率提高最多(32.9%);牛枝子分枝期亏缺灌溉提高最多(27.4%)。因此,适当亏缺灌溉可以提高两种植物水分利用效率。从水分利用效率和种子产量来看,干旱区沙芦草和牛枝子种子人工繁育时可采取亏缺灌溉,适宜亏缺的生育期分别为开花期和分枝期。  相似文献   

9.
Field and lysimeter experiments were conducted in 2002 to investigate the effects of an antigibberellin growth regulator (Moddus, active ingredient trinexapac‐ethyl, Syngenta Crop Protection UK Ltd, Whittlesford, Cambridge, UK) and an auxin‐stimulating (Route, active ingredient zinc ammonium acetate, De Sangosse Ltd, Swaffham Bulbeck, Cambridge, UK) growth promoter on root growth, soil water extraction and the drought response of spring barley. The effects on root growth and distribution were investigated in the field. The effects on the drought response were studied in 1.2‐m‐deep lysimeters packed with a loamy sand subsoil and sandy loam topsoil. Lysimeters were located under a fixed rain shelter, and drought was imposed by withholding irrigation. In both field and lysimeter experiments, growth regulator/promoters were applied to cv. Optic at early tillering according to the manufacturers’ recommendations. After withholding irrigation from lysimeters at Zadoks growth stage (GS) 21 (37 days after sowing), 50% of the profile available water had been depleted by flag leaf emergence (GS 37/39; 62 days after sowing). Drought significantly reduced stem biomass at ear emergence (GS 59; 78 days after sowing) but not leaf or ear dry weight; this was before there was any significant reduction in leaf water potential or stomatal conductance to water vapour. The reduction in stem biomass may reflect a change in partitioning between shoot and root in response to soil drying. When averaged over growth regulator/promoter treatments, drought reduced grain yield by approximately 1 t ha?1. This was associated with a reduction in both ears per m2 and grains per ear. The mean grain weight was not reduced by drought, in spite of significant reductions in stomatal conductance and canopy lifespan post‐anthesis. Route, and to a lesser extent Moddus, significantly increased abscisic acid accumulation in the stem base of droughted plants, and there was some indication of a possible delay in stomatal closure in Route‐treated plants as the soil moisture deficit developed. However, there was no significant effect on the amount of soil water extracted or grain yield under drought. Similarly, in field experiments, neither Route nor Moddus significantly altered total root length, biomass or distribution. There is little evidence from these experiments or in the literature to support the use of antigibberellin or auxin‐simulating growth regulator/promoters to modify root growth and drought avoidance of spring barley.  相似文献   

10.
11.
土壤分水分亏缺导致小麦幼穗内氮、磷、异戊烯基腺嘌呤(iPAs)含量降低,脱落酸(ABA)含量升高,影响小花的发育,结实粒数减少。在水分充足的条件下,耐旱性不同的品种穗中氮、氮、iPAs含量和ABA含量无显著差异;在水分胁迫条件下,旱地品种幼穗中氮,磷、iPAs含量降低的幅度和ABA含量升高的幅度低于水浇地品种,这是耐旱品种在土壤水分亏缺时,较水浇地品种小花发育好、成花率和结实率高,穗粒数稳定的生理  相似文献   

12.
以高产大果型西红柿品种中研988为材料,采用分根培养的方法,研究了控制性分根交替灌溉(APRI)条件下,不同氮素形态(硝态氮、铵态氮)对番茄生长、产量及果实品质的影响.结果表明: 同一灌溉方式或下限处理下,铵态氮对番茄植株前期生长有利,而硝态氮促进番茄植株后期生长,并促进果实产量增加.在APRI同一灌水下限下,硝态氮处理可提高果实维生素C含量及糖酸比,提高营养品质.同一氮素形态供应下,APRI番茄的株高和叶面积均小于正常灌溉(CK),但灌水下限为60%田间持水量(θf)的APRI处理番茄茎粗在生长后期有所增加.在同一氮素形态下,与CK相比,APRI各处理的产量均下降,其中灌水下限在40%θf的APRI处理产量下降了22.4%~26.3%;而灌水下限在60% θf的APRI处理仅下降了5.3%~5.4%,下降幅度相对较小,而品质显著提高,并具有明显的节水效果.因此,控制灌水下限在60%θf、供应硝态氮的APRI处理为番茄高产、优质、节水的最佳处理.
  相似文献   

13.
根系分区交替灌溉不同交替周期对苹果树   总被引:6,自引:0,他引:6  
刘贤赵  宿庆  孙海燕 《生态学报》2010,30(18):4881-4888
以11~12年生苹果树为研究对象,于2006~2007年在烟台市农科院果树研究所试验果园进行了根系分区交替灌溉(APRI)试验,研究了APRI灌溉模式下不同交替灌溉周期对苹果树生长、产量、品质及水分利用效率的影响。结果表明,APRI处理的苹果树湿润一侧土壤含水量随深度增加而减少,并出现明显拐点,交替周期愈短拐点愈接近地表,干旱一侧则随深度增加而增大,二者含水量最大差值出现在土壤表层0~10 cm。每2周交替灌溉1次的APRI1处理的叶水势、净光合速率、蒸腾速率和气孔导度稍有降低,但与对照均没有明显差异,而每4周交替灌溉1次的APRI2和APRI3处理的上述指标则显著低于对照(P < 0.05)。APRI处理显著抑制植株的新梢生长,但对果实直径没有显著影响。APRI1和APRI2处理的苹果产量比对照和APRI3下降了11.1 %~14.8 %,但供水量减少了50 %,水分利用效率提高了71 %~80 %,而且显著提高了可溶性固形物含量和果实干物质含量,使果实含酸量降低,果实硬度增加,果实品质明显改善。由此可以推断采用根系分区交替灌溉并进行适宜的交替周期处理(如本试验中的APRI1)可以达到大量节水、提高苹果品质而不明显降低产量的目的,是苹果生产中一种切实可行的灌溉方式,值得旱地苹果园大力推广。  相似文献   

14.
Alternate partial root zone irrigation (APRI) is a new water-saving irrigation technique. It can reduce irrigation water and transpiration without reduction in crop yield, thus increase water and nutrient use efficiency. Understanding of soil moisture distribution and dynamic under the alternate partial root zone drip irrigation (APDI) can help to develop the efficient irrigation schemes. In this paper, a two-dimensional (2D) root water uptake model was proposed based on soil water dynamic and root distribution of grape vine, and a function of soil evaporation related to soil water content was defined under the APDI. Then the soil water dynamic model of APDI (APRI-model) was developed based on the 2D root water uptake model and soil evaporation function combined with average measured soil moisture content at 0–10 cm soil layer. Soil water dynamic in APDI was respectively simulated by Hydrus-2D model and APRI-model. The simulated soil water contents by two models were compared with the measured value. The results showed that the values of root-mean-square-error (RMSE) range from 0.01 to 0.022 cm3/cm3 for APRI-model, and from 0.012 to 0.031 cm3/cm3 for Hydrus-2D model. The average relative error between the simulated and measured soil water content is about 10% for APRI-model, and from 11% to 29% for Hydrus-2D model, indicating that two models perform well in simulating soil moisture dynamic under the APDI, but the APRI-model is more suitable for modeling the soil water dynamic in the arid region with greater soil evaporation and uneven root distribution.  相似文献   

15.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

16.
Warmer and drier climates over Eastern Amazonia have been predicted as a component of climate change during the next 50–100 years. It remains unclear what effect such changes will have on forest–atmosphere exchange of carbon dioxide (CO2) and water, but the cumulative effect is anticipated to produce climatic feedback at both regional and global scales. To allow more detailed study of forest responses to soil drying, a simulated soil drought or 'throughfall exclusion' (TFE) experiment was established at a rain forest site in Eastern Amazonia, Brazil, for which time-series sap flow and soil moisture data were obtained. The experiment excluded 50% of the throughfall from the soil. Sap flow data from the forest plot experiencing normal rainfall showed no limitation of transpiration throughout the two monitored dry seasons. Conversely, data from the TFE showed large dry season declines in transpiration, with tree water use restricted to 20% of that in the control plot at the peak of both dry seasons. The results were examined to evaluate the paradigm that the restriction on transpiration in the dry season was caused by limitation of soil-to-root water transport, driven by low soil water potential and high soil-to-root hydraulic resistance. This paradigm, embedded in the soil–plant–atmosphere (SPA) model and driven using on-site measurements, provided a good explanation ( R 2 > 0.69) of the magnitude and timing of changes in sap flow and soil moisture. This model-data correspondence represents a substantial improvement compared with other ecosystem models of drought stress tested in Amazonia. Inclusion of deeper rooting should lead to lower sensitivity to drought than the majority of existing models. Modelled annual GPP declined by 13–14% in response to the treatment, compared with estimated declines in transpiration of 30–40%.  相似文献   

17.
Guenni  Orlando  Marín  Douglas  Baruch  Zdravko 《Plant and Soil》2002,243(2):229-241
The introduction of African grasses in Neotropical savannas has been a key factor to improve pasture productivity. We compared the response of five Brachiaria species to controlled drought (DT) in terms of biomass yield and allocation, pattern of root distribution, plant water use, leaf growth, nutrient concentration and dry matter digestibility. The perennial C4 forage grasses studied were B. brizantha (CIAT 6780), B. decumbens (CIAT 606), B. dictyoneura (CIAT 6133), B. humidicola (CIAT 679) and B. mutica. Two DT periods, which mimic short dry spells frequent in the rainy season, were imposed by suspending irrigation until wilting symptoms appeared. They appeared after 14 days in B. brizantha, B. decumbens and B. mutica, and after 28 days in B. humidicola and B. dictyoneura. The impossed drought stress was mild and only the largest grass, B. brizantha, showed reduced (23%) plant yield. The other grasses were able to adjust growth and biomass allocation in response to DT leaving total plant yield relatively unaffected. Brachiaria mutica, had a homogeneous root distribution throughout the soil profile. In the other species more than 80% of root biomass was allocated within the first 30 cm of the soil profile. Brachiaria brizantha and B. decumbens had the lowest proportion of roots below 50 cm. Drought caused a general reduction in root biomass. The shoot:root ratio in B. mutica and B. humidicola increased in response to DT at the expense of a reduction in root yield down to 50 cm depth. Although the total water volume utilized under DT was similar among grasses, the rate of water use was highest (0.25 l day–1) in B. brizantha, B. decumbens and B. mutica and lowest (0.13 l day–1) in B. humidicola and B. dictyoneura. In all species leaf expansion was reduced by DT but it was rapidly reassumed after rewatering. Drought increased specific leaf mass (SLM) only in B. brizantha compensating for leaf area reduction, but leaf area ratio (LAR) was unaffected in all species. In almost all grasses DT increased leaf N and K concentration and in vitro dry matter digestibility. The results indicate that B. brizantha, B. decumbens and to a lesser extent, B. mutica are better adapted to short dry periods, whereas B. humidicola and B. dictyoneura are better adapted to longer dry periods.  相似文献   

18.
通过温室模拟控制实验,研究了咸淡交替灌溉处理对外来克隆植物大米草(Spartina anglica)形态性状、克隆生长、生物量积累及分配格局的影响。实验共设6种浇灌处理:单一淡水灌溉(D)、单一咸水浇灌(X)、淡咸交替灌溉(DX)、咸淡交替灌溉(XD)、淡咸淡交替灌溉(DXD)和咸淡咸交替灌溉(XDX)。结果表明:DX处理条件下,大米草株高、叶片数及根长均达到最高;克隆数最多,且显著高于X、DXD和XDX处理;芽数及根状茎总长均显著大于XDX处理;在DX和D处理下,地上生物量、根系生物量、地下生物量和总生物量均显著高于其它处理。这表明作为滨海盐沼植物,大米草种群比较适应淡咸水交替环境,单一的咸水,以及过度的咸淡转换均不利于大米草的生长繁殖与生物量积累,而淡咸水交替过程的失序可能是引起我国大米草种群衰退的重要原因。  相似文献   

19.
Plant water potential (ψ), its components, and gas exchange data of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) were measured in response to seasonal changes in water availability over two consecutive years. The relative contribution of physiological and morphological adjustments to drought resistance was assessed through Principal Component Analyses. There were large adjustments in stomatal conductance (∼36 % of accounted variance). Net photosynthetic rate and water use efficiency were closely tuned to water availability and accounted for ∼17 % of variance. The slope of the water potential vs. relative water content (dψ/dRWC0) below zero pressure potential increased as a result of seasonal and ontogenic increases in apoplastic water fraction and accounted for ∼20 % variance. This tolerance mechanism was accompanied by an increased range of positive pressure potential, suggesting a functional role of sclerophylly in these Mediterranean evergreens. Similarly, changes in the slope of dψ/dRWC in the range of positive pressure potential (∼13 % of accounted variance) were associated to variations in cell wall elasticity and resulted in lower RWC at zero pressure potential. When considering the species studied separately, the results indicated the primary role of stomatal regulation in the drought resistance of Qilex, while increased apoplastic water fraction had a major contribution in the drought resistance of P. latifolia. This research was supported by Spanish CICYT grants CLI99-0479 and REN-2002-00633. L.S. acknowledges the financial support from Ministerio de Ciencia y Tecnologia (“Ramon y Cajal” program, Spain). An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号