首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible.  相似文献   

2.
Abstract

In Myasthenia Gravis most anti-acetylcholine receptor (AChR) antibodies are against a highly conserved area of the AChR α-subunit called the Main Immunogenic Region (MIR). Amino acid residues critical for MIR formation have been located within the sequence α67–76. In the present study, binding of anti-AChR monoclonal antibodies (mAbs) to synthetic peptide analogues of the sequence α67–76 of human and Torpedo AChRs containing conservative single-residue substitutions identified the amino acid residues most important to the antigenicity of the MIR sequence, and offered clues to its tridimensional structure.

Conservative substitutions of residues Asn68 and Asp71 greatly diminished mAb binding, identifying them as critical contact residues for anti-MIR mAbs. Substitutions at Asp70 and Tyr72 moderately affected binding. Cross-reactive mAbs originally raised against Electrophorus AChR bound single residue-substituted synthetic peptides in a manner consistent with the possibility that Electrophorus AChR may have a glutamic acid residue at position α70 or α71. Substitutions at residues Asp/Ala70 and Val/Ile70 between human and Torpedo α-subunits may be size-compensating, suggesting these amino acids in the native AChR may be in closer proximity than proposed in previous models of the MIR.  相似文献   

3.
Abstract

The sequence region 55–74 of the α-subunit of the acetylcholine receptor (AChR) from Torpedo californica electroplax comprises the amino-terminal end of a sequence segment—residues α67–76—forming the main immunogenic region (MIR), which is most frequently recognized by anti-AChR autoantibodies in myasthenia gravis. The synthetic sequence α55–74 of Torpedo AChR binds α-bungarotoxin (αBTX), suggesting that amino acid residues within this sequence region may contribute to formation of an αBTX binding site.

Using single-residue substituted synthetic analogues of the sequence α55–74 of Torpedo AChR, in which each residue was sequentially substituted by either glycine or alanine, we sought identification of the amino acids involved in interaction with α-neurotoxins and with three different anti-MIR monoclonal antibodies (mAbs 6, 22, and 198). Substitution of Arg55, Arg57, Trp60, Arg64, Leu65, Arg66, Trp67, or Asn68 strongly inhibited α-toxin binding, whereas substitutions of Ile61, Val63, Pro69, Ala70, Asp71, or Tyr72 had marginal effects. Substitutions within the region α68–72 significantly diminished binding of anti-MIR mAbs, although residue preferences differed among mAbs. Further, substituting Trp60 substantially reduced binding of mAb 198, and moderately affected binding of mAb 6, and substitution of Asp62 slightly but consistently affected binding of mAbs 6 and 22.  相似文献   

4.
The conformational properties of two [D -A70, A76] and [Aib70, A76] analogues of the α67–76 Torpedo acetylcholine receptor fragment, with low binding capacity for the anti main immunogenic region (MIR) antibodies, were studied in DMSO by two-dimensional nmr techniques and molecular dynamics simulations. The results were compared to the free and bound conformations of the [A76] analogue, which has twice more affinity for the anti-MIR monoclonal antibody 6 (mAb6), than the natural Torpedo sequence. It appeared that a single substitution of the A70, at a crucial position, by the D -A70 or Aib70, could modify completely the conformational behavior of the peptide and reduced its recognition by the anti-MIR antibody. The WNPADY rigid structure at the N-terminal part was essential for antibody recognition. The adjacent more flexible C-terminal sequence (GGIK) gives additional stability to the monoclonal antibody–peptide complex probably due to an adequate orientation of the peptide side chains in the complex, by setting them in close contact with the antibody. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Most anti-nicotinic acetylcholine receptor (AChR) antibodies in myasthenia gravis are directed against an immunodominant epitope or epitopes [main immunogenic region (MIR)] on the AChR alpha-subunit. Thirty-two synthetic peptides, corresponding to the complete Torpedo alpha-subunit sequence and to a segment of human muscle alpha-subunit, were used to map the epitopes for 11 monoclonal antibodies (mAbs) directed against the Torpedo and/or the human MIR and for a panel of anti-AChR mAbs directed against epitopes on the alpha-subunit other than the MIR. A main constituent loop of the MIR was localized within residues alpha 67-76. Residues 70 and 75, which are different in the Torpedo and human alpha-subunits, seem to be crucial in determining the binding profile for several mAbs whose binding to the peptides correlated very well with their binding pattern to native Torpedo and human AChRs. This strongly supports the identification of the peptide loop alpha 67-76 as the actual location of the MIR on the intact AChR molecule. Residues 75 and 76 were necessary for binding of some mAbs and irrelevant for others, in agreement with earlier suggestions that the MIR comprises overlapping epitopes. Structural predictions for the sequence segment alpha 67-76 indicate that this segment has a relatively high segmental mobility and a very strong turning potential centered around residues 68-71. The most stable structure predicted for this segment, in both the Torpedo and human alpha-subunits, is a hairpin loop, whose apex is a type I beta-turn and whose arms are beta-strands. This loop is highly hydrophilic, and its apex is negatively charged. All these structural properties have been proposed as characteristic of antibody binding sites. We also localized the epitopes for mAbs against non-MIR regions. Among these, the epitope for a monoclonal antibody (mAb 13) that noncompetitively inhibits channel function was localized within residues alpha 331-351.  相似文献   

6.
Two-dimensional NMR experiments [correlated spectroscopy (COSY) and two-dimensional transferred nuclear Overhauser enhancement spectroscopy (TR-NOESY)] have been applied to study the interactions of a monoclonal antibody (mAb) directed to the main immunogenic region (MIR) of the acetylcholine receptor (AChR), and four synthetic decapeptides from the MIR. The decapeptides were the Torpedo AChR alpha 67-76 fragment (W67-N68-P69-A70-D71-Y72-G73-+ ++G74-I75-K76) and its three [A69], [A73], and [A76] analogues. The results led to the following conclusions: (1) the magnitude of the TR-NOE cross peaks does not depend only on the structuration of the peptide in the bound state, but also on restrictions of the mobility, i.e., on the correlation time tau c, which can be different for every residue; (2) the binding capacity of the synthetic peptides to mAbs measured by radioimmunoassay is directly correlated to the NOE magnitude; and (3) the combined interpretation of the COSY and TR-NOESY experiments gives a qualitative information about the nature and the overall conformation of the sequence which is in contact with the mAb binding site.  相似文献   

7.
Myasthenia gravis (MG) is caused by autoantibodies against the nicotinic acetylcholine receptor (AChR) of the neuromuscular junction. The anti-AChR antibodies are heterogeneous. However, a small region on the extracellular part of the AChR alpha subunit, called the main immunogenic region (MIR), seems to be the major target of the anti-AChR antibodies, but not of the specific T-cells, in experimental animals and possibly in MG patients. The major loop of the overlapping epitopes for all testable anti-MIR monoclonal antibodies (MAbs) was localized within residues 67-76 (WNPADYGGIK for Torpedo and WNPDDYGGVK for human AChR) of the alpha subunit. The N-terminal half of alpha 67-76 is the most critical, Asn68 and Asp71 being indispensable for binding. Yet anti-MIR antibodies are functionally and structurally quite heterogeneous. Anti-MIR MAbs do not affect channel gating, but they are very potent in mediating acceleration of AChR degradation (antigenic modulation) in cell cultures and in transferring experimental MG in animals. Fab fragments of anti-MIR MAbs bound to the AChR prevent the majority of the MG patients' antibodies from binding to and causing loss of the AChR. Whether this inhibition means that most MG antibodies bind on the same small region or is a result of broad steric/allosteric effects is under current investigation.  相似文献   

8.
Antigenic modulation of acetylcholine receptor (AChR), i.e., acceleration of its internalization and degradation rate by antibody-cross-linking, is considered to be one of the two main causes of AChR loss in myasthenia gravis (MG). The majority of the antibodies to AChR are directed to the main immunogenic region (MIR) on the alpha-subunit of the receptor. We here examine the relative contribution of the anti-MIR antibody fraction (as well as of another fraction) to the antigenic modulation caused by MG patients' sera. Fab fragments of an anti-MIR monoclonal antibody (mAb) or a mAb to the beta-subunit (neither of which causes antigenic modulation) were allowed to shield their corresponding regions on the AChR on the mouse muscle cell line BC3H1. The 27 MG sera subsequently added thus bound to all other regions except to the protected one, and the resulting antigenic modulation was measured. The anti-MIR mAb protected the AChR by 68 +/- 16%. This is interpreted as the contribution to antigenic modulation of the anti-MIR antibody fraction in the human sera. This percentage correlated very well with the occurrence of the anti-MIR antibodies in the same sera. The anti-beta mAb gave only small protection of the AChR. No significant pattern differences were observed between sexes, early and recent onset of the disease, or high and low antibody titers. It is concluded that as far as it concerns the one of the pathogenic mechanisms in MG, i.e., the antigenic modulation, the MIR seems to be the main pathogenic region. The observation that a single mAb can efficiently protect the AChR in this system may prove to be of therapeutic interest.  相似文献   

9.
Monoclonal antibodies (mAbs) to the main immunogenic region (MIR) bind to fusion proteins containing region 37-200 of the alpha chain of Torpedo, mouse, and chicken nicotinic acetylcholine receptor. In the case of the mouse alpha chain, these mAbs react with sequence 61-216 but not with 74-216. A synthetic peptide M1, containing residues 61-76 of the mouse alpha chain, also binds these anti-MIR mAbs, showing that all or part of their binding site is included in this region. The conformational dependence and epitope specificity of the mAbs are discussed.  相似文献   

10.
S J Tzartos  C Valcana  R Kouvatsou    A Kokla 《The EMBO journal》1993,12(13):5141-5149
Tyrosine phosphorylation of the nicotinic acetylcholine receptor (AChR) seems to be involved in AChR desensitization and localization on the postsynaptic membrane. This study reveals a probable function of the single known beta subunit phosphorylation site (beta Tyr355) and provides suitable tools for its study. The epitopes for 15 monoclonal antibodies (mAbs) against the cytoplasmic side of the AChR beta subunit were precisely mapped using > 100 synthetic peptides attached on polyethylene rods. Eleven mAbs bound to a very immunogenic cytoplasmic epitope (VICE-beta) on Torpedo beta 352-359, which contains the beta Tyr355, and to the corresponding sequence of human AChR. The contribution of each VICE-beta residue to mAb binding was then studied by peptide analogues having single residue substitutions. Overall, each of the residues beta 354-359, including beta Tyr355, proved critical for mAb binding. Two of our four mAbs known to block the ion channel were found to bind at (mAb148) or close (mAb10) to VICE-beta. Tyrosine phosphorylation of Torpedo AChR by endogenous kinase(s) selectively reduced binding of some VICE-beta mAbs, including the channel blocking mAb148. We conclude that VICE-beta probably plays a key role in AChR function. Elucidation of this role should be facilitated by the identified mAb tools.  相似文献   

11.
In contrast to autoantibodies that are functionally silenced or deleted, IgG Abs that react with autologous insulin routinely follow hormone administration and arise spontaneously in autoimmune (type I) diabetes mellitus. To understand Ab interactions with autologous insulin, rat proinsulin I and 32 alanine substituted analogues were expressed as fusion proteins and used to examine 16 anti-insulin mAb in ELISA. The results identify several amino acid residues that contribute to binding by a large majority (>75%) of mAb, although no single residue is uniformly required for binding by all mAb. Replacements at charged or polar residues on the insulin surface including A4 (Asp), A5 (Gln), A9 (Ser) A12 (Ser), A17 (Gln), A18 (Asn), B13 (Glu), and B21 (Glu) consistently decreased mAb binding. Single alanine substitutions at positions A16 (Leu), A11 (Cys), B8 (Gly), and B15 (Leu) that are predicted to alter the core structure or chain folding vary widely in their impact on Ab binding. mAb that bind insulin preferentially on solid phase (i.e., ELISA) are highly sensitive to replacement of single residues, and substitutions that alter conformation abolish binding. In contrast, high affinity mAb that bind insulin in solution are relatively insensitive to substitutions at single residues, and they maintain binding to all mutants, including those with disrupted conformation. For such high affinity mAb, replacement of long hydrophobic side chains can augment binding, suggesting mAb interactions with insulin include an induced fit. Thus, the ability of insulin to function as a "molten globule" may contribute to the diversity and autoreactivity of the anti-insulin repertoire.  相似文献   

12.
Thirty-nine mutant tryptophan synthase alpha subunits have been purified and analyzed (in the presence of the beta 2-subunit) for their enzymatic (kcat, Km) behavior in the reactions catalyzed by the alpha 2.beta 2 complex, the fully constituted form of this enzyme. The mutant alpha subunits, obtained by in vitro random, saturation mutagenesis of the encoding trpA gene, contain single amino acid substitutions at sites within the first 121 residues of the alpha polypeptide. Four categories of altered residues have been tentatively assigned roles in the catalytic functions of this enzyme: 1) catalytic residues (Glu49 and Asp60); 2) residues involved in substrate binding or orientation (Phe22, Thr63, Gln65, Tyr102, and Leu105); 3) residues involved in alpha.beta subunit interactions (Gly51, Pro53, Asp56, Asp60, Pro62, Ala67, Phe72, Thr77, Pro78, Tyr102, Asn104, Leu105, and Asn108); and 4) residues with no apparent catalytic roles. Catalytic residue alterations result in no detectable activity in the alpha-subunit specific reactions. Substrate binding/orientation roles are detected enzymatically primarily as rate defects; alterations only at Tyr102 result in apparent Km effects. alpha.beta interaction roles are detected as rate defects in all tryptophan synthase reactions plus Km increases for the alpha-subunit substrate, indole-3-glycerol phosphate, only when L-serine is present at the beta 2-subunit active site. A substitution at only one site, Asn104, appears to be unique in its potential effect on intersubunit channeling of indole, the product of the alpha-subunit specific reaction, to the beta 2-subunit active site.  相似文献   

13.
Photoaffinity labeling is a powerful tool for the characterization of the molecular basis of ligand binding to acceptor molecules, which provides important insights for mapping the bimolecular interfaces. The autoimmune disease myasthenia gravis is caused by autoantibodies against the acetylcholine receptor (AChR). The majority of the anti-AChR antibodies bind to the "main immunogenic region" (MIR) of the AChR. To identify the contact points between the complementarity determining regions of the anti-MIR antibodies that recognize the MIR contact sites of the AChR, we present here three photoreactive dodecapeptide MIR analogues containing the photolabel p-benzoyl-L-phenylalanine (Bpa) moiety, either in position 1 or 11. The structure of the produced 12-mers was analyzed using two-dimensional (1)H-NMR spectroscopy, whereas their binding to anti-MIR monoclonal antibodies (mAbs) was determined by immunochemical assays. In all cases the modifications resulted in conservation of the beta-turn conformation of the N-terminus, which has been proved essential for antibody recognition and increased anti-MIR binding relative to the MIR decapeptide.  相似文献   

14.
Jung HH  Yi HJ  Lee SK  Lee JY  Jung HJ  Yang ST  Eu YJ  Im SH  Kim JI 《Biochemistry》2007,46(51):14987-14995
Myasthenia gravis (MG) and its animal model, experimental MG (EAMG), are autoimmune disorders in which major pathogenic antibodies are directed against the main immunogenic region (MIR) of the nicotinic acetylcholine receptor (nAChR). In an earlier attempt to develop peptide mimotopes capable of preventing the anti-MIR-mediated pathogenicity, the peptide Pep.1 was initially identified from phage display, and subsequently, Cyclic extended Pep.1 (Cyc.ext.Pep.1), which incorporates eight additional residues into the Pep.1 sequence and has an affinity for the anti-MIR antibody mAb198 3 orders of magnitude greater than that of Pep.1, was developed. In an animal model, Pep.1 shows no ability to inhibit mAb198-induced EAMG, whereas Cyc.ext.Pep.1 successfully blocks anti-MIR antibody 198 (mAb198)-induced EAMG. Our aim in this study was to identify the structural characteristics related to the different affinities for mAb198 of Pep.1 and Cyc.ext.Pep.1 using NMR spectroscopy and alanine scanning analysis. The NMR structural analysis revealed that Pep.1 is very flexible in solution, whereas Cyc.ext.Pep.1 is highly rigid within a region containing several turn structures. Interestingly, TRNOE experiments revealed that mAb198-bound Pep.1, particularly in the region between Asn7 and Glu11, shows significant structural similarity to the region between Asn10 and Glu14 of Cyc.ext.Pep.1, which is critical for interaction with mAb198. We therefore conclude the higher affinity of Cyc.ext.Pep.1 for mAb198 reflects the fact that incorporation of additional residues producing a single disulfide bond endows Pep.1 with a conformational rigidity that mimics the structure of mAb198-bound Pep.1. Furthermore, our results suggest that cyclic extended peptides could be utilized generally as useful tools to optimize the affinity of phage library-derived peptide antigens.  相似文献   

15.
Five derivatives of Naja nigricollis toxin alpha, spin-labeled on a single amino group, were prepared. The toxin derivatives were purified to homogeneity by ion-exchange and high-pressure liquid chromatographies. The modified amino groups are localized at residue 1 and lysines 15, 27, 47 and 51. Competition data show that incorporation of spin label at residues 27 or 47 reduces the affinity of the toxin for the nicotinic acetylcholine receptor (AcChR), while incorporation at residues 1 or 15 diminishes toxin affinity for a monoclonal toxin-specific immunoglobulin (M alpha 1). Classical and/or saturation transfer electron spin resonance (ESR) analysis was carried out on each derivative, either in the free state or bound to AcChR or M alpha 1. The data obtained give the following indications. In the free state, the nitroxides incorporated at residues 1, 15, 47 and 51 have their own rapid motion, while that at residue 27 had no residual mobility and reflects the toxin rotation. Binding of AcChR to the toxin reduces the motion of the nitroxide bound to Lys47. Binding of M alpha 1 to the toxin immobilizes the two nitroxides fixed on residues 1 and 15. ESR spectra show that Lys27-bound nitroxide remains immobilized upon binding of either AcChR or M alpha 1. The change in nitroxide immobilization observed upon AcChR or M alpha 1 binding correlates well with the variation of nitroxide accessibility to a water-soluble paramagnetic N2+i ion. Binding of the labeled Lys47 toxin derivative to AcChR yields a complex ESR signal, disclosing the existence of a physical difference between the two toxin binding sites on AcChR. All the data indicate that AcChR and M alpha 1 bind at two topographically distinct sites on the toxin surface.  相似文献   

16.
We have used tryptophan fluorescence spectroscopy to characterize the binding affinities of an Escherichia coli LamB signal peptide family for lipid vesicles. These peptides harbor charged residue substitutions in the hydrophobic core region. Titrations of peptides with vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-oleoyl-sn-3-phosphoglycerol (65:35 mol%), in conjunction with evaluation of peptide dissociation rates from these vesicles, were used to determine binding parameters quantitatively. We find that under low ionic strength conditions, point mutations introducing negatively charged aspartate residues substantially reduce peptide affinity relative to the wild-type peptide. However, the difference between wild-type and mutant peptide affinities was much lower under approximately physiological ionic strength. In addition, the lipid affinities of model surface-binding and transmembrane peptides were determined. These comparative studies with signal and model peptides permitted semi-quantitative deconvolution of signal peptide binding into electrostatic and hydrophobic components. We find that both interactions contribute significantly to binding, although the theoretically available hydrophobic free energy is largely offset by unfavorable polar-group effects. The implications of these results for understanding the potential roles of the signal sequence in protein translocation are discussed.  相似文献   

17.
We have probed the acetylcholine receptor (AcChR) molecule with six anti-AcChR monoclonal antibodies (mAbs) whose binding to the AcChR is inhibited or blocked by alpha-bungarotoxin (alpha BgTx). mAbs bound with a maximum stoichiometry of either one mAb (387D, 247G) or two mAbs (383C, 572C, 370C, 249E) per AcChR monomer, and the extent to which they inhibited alpha BgTx binding directly correlated with their stoichiometry of binding. The effect of mAbs on the alpha BgTx and cholinergic ligand binding properties of the AcChR molecule defined three major categories of mAbs: those that block alpha BgTx and carbamylcholine (agonist) binding, but do not block d-tubocurarine (antagonist) binding (383C, 572C, 370C and 249E); mAb 387D, which blocks agonist binding and partially blocks alpha BgTx and d-tubocurarine binding; and mAb 247G, which does not affect agonist binding, blocks at most 50% of the alpha BgTx binding sites, and decreases the affinity of the high affinity component of d-tubocurarine binding (Mihovilovic, M., and Richman, D. P. (1984) J. Biol. Chem. 259, 15051-15059). Except for mAb 247G, these mAbs strongly competed with each other for binding to the AcChR. In contrast, mAb 247G blocks about 50% of the binding of all the other mAbs. The results demonstrate the ability of mAbs to stabilize different conformational states of the AcChR and to probe cholinergic epitopes of functional importance. They also indicate the nonequivalence of the two alpha-toxin binding regions of the AcChR molecule and suggest that it is possible to identify epitopes within the alpha BgTx binding region that when bound produce differential effects on the binding of the agonist (carbamylcholine) and the antagonist (d-tubocurarine).  相似文献   

18.
The class I MHC molecule HLA-B27 bears an unpaired Cys residue at position 67, which is predicted to face the Ag binding pocket, based on the x-ray crystallographic model of HLA-A2. To investigate the potential of this residue in the antigenic structure of HLA-B27, a panel of 11 mutant HLA-B27 genes has been created, each bearing a separate amino acid substitution at position 67. The genes were transfected into mouse L cells and the resulting cells analyzed by cytofluorography with a panel of antibodies reactive with the wild-type B27 molecule. Although previous studies had indicated that all mAb that bound the B27 molecule on human lymphocytes bound comparably to L cells transfected with the wild-type B27 gene in the absence of h beta 2-m (human beta 2-microglobulin), the first of the mutant B27 genes was found to express several mAb epitopes in the presence but not in the absence of a h beta 2-m gene. Therefore, subsequent analysis of the B27 mutant panel was conducted in L cells coexpressing the h beta 2-m gene. Under these circumstances, all of the mutants bound the monomorphic anti-class I HLA mAb W6/32 and B.9.12.1, as well as the broadly polymorphic mAb B.1.23.2. Binding to the mutant transfectants of three anti-B27 mAb that cross-react with HLA-B7, ME1, GS145.2, and GSP5.3, was directly proportional to the size of the substituted amino acid side chain. The binding of another anti-B27 mAb, B27M2, that recognizes a B27 determinant that includes the region of amino acids 77-81, was not affected by the Cys67- greater than Tyr67 substitution. Rabbit antibodies to a synthetic peptide composed of B27 amino acids 61-84 bound to both the wild-type B27 and to the Tyr67 mutant. This binding, but not the binding of ME1 or B27M2, was inhibited by the synthetic peptide. These data are interpreted as suggesting that the large amino acid substitutions at position 67 induce a limited conformational change that disrupts the epitopes of the three anti-B27, B7 mAb, that are themselves at least partially conformational. The potential implications of these findings for the role of HLA-B27 in disease pathogenesis are discussed.  相似文献   

19.
The entire 396 residue extracellular sequence of gE the HSV-1 Fc gamma-binding glycoprotein has been studied to determine epitopes binding to two mAb II-481 and 88S previously demonstrated to react with gE at or near the Fc gamma-binding regions. Overlapping 7-mers constructed from the established sequence were tested with mAb II-481 and 88S along with their Fab fragments. Control mAb of the same IgG 2b subclass as well as whole rabbit and human IgG and Fc were also tested for binding to overlapping linear sequences using the ELISA pin assay to map Fc gamma-binding regions. Six sequences PKTSWRRVS, GLYTLSV, QVASVVLVVQP, PAPPRSWP, CLYHPQLP, and ASTWTSRL were found that constituted major regions binding to the two different mAb of the same specificity. Glycine substitution for each residue within these sequences indicated that arginine 29, tryptophane 70, valine 144, valine 157, arginine 208, histidine 283, and arginine 305 constituted important portions of the II 481 mAb-reactive epitope. Many of the same regions along with one other, GPLHPSW, appeared to be involved in Fc gamma binding. Substitution of glycine for each residue indicated that histidine 67, tryptophane 70, valine 71, valine 157, valine 158, valine 160, valine 161, tryptophane 210, serine 279, cysteine 280, leucine 281, tyrosine 282, histidine 283, proline 284, glutamine 285, proline 287, tryptophane 302, and arginine 305 were important for Fc gamma-binding. Inhibition by gE peptides of rosetting of E sensitized with rabbit IgG antibody around HSV-1-infected cells, as well as inhibition of rosetting using F(ab)2 fragments of rabbit antibodies to these peptides was used to assay relative contributions of all seven regions to Fc gamma-binding activity. Our results provide a tentative map of mAb binding and Fc gamma-reactive sites on gE. mAb and Fc gamma binding of a limited number of individual antigenic amino acids widely distributed among the separate reactive regions suggest that many of the same separate residues contribute both to antigenicity as well as to Fc gamma-binding activity.  相似文献   

20.
Alanine-scanning mutagenesis on human growth hormone (hGH) identified 5 primary determinants (Arg 8, Asn 12, Arg 16, Asp 112, and Asp 116) for binding to a monoclonal antibody (MAb 3) (Jin L, Fendly BM, Wells JA, 1992, J Mol Biol 226:851-865). To further analyze the energetic importance of residues surrounding these five, we mutated all neighboring residues to alanine in groups of 7-16 (a procedure we call alanine shaving). Even the most extremely mutated variant, with 16 alanine substitutions, caused less than a 10-fold reduction in binding affinity to MAb3. By comparison, mutating any 1 of the 5 primary determinants to alanine caused a 6- to > 500-fold reduction in affinity. Replacing any of the 4 charged residues (Arg 8, Arg 16, Asp 112, and Asp 116) with a homologous residue (i.e., Arg to Lys or Asp to Glu) caused nearly as large a reduction in affinity as the corresponding alanine replacement. It was possible to graft the 5 primary binding determinants onto a nonbinding homologue of hGH, human placental lactogen (hPL), which has 86% sequence identity to hGH. The grafted hPL mutant bound 10-fold less tightly than hGH to MAb3 but bound as well as hGH when 2 additional framework mutations were introduced. Attempts to recover binding affinity by grafting the MAb3 epitope onto more distantly related scaffolds having a similar 4-helix bundle motif, such as human prolactin (23% sequence identity) or granulocyte colony-stimulating factor, were unsuccessful.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号