首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primase associated with the DNA polymerase-primase of Drosophila melanogaster fails to show enzymatic turnover. However, it does show turnover when dissociated from the intact polymerase-primase. Both forms of the enzyme can catalyze the synthesis of primers that are not complementary to the DNA template. Like the intact enzyme, the isolated primase synthesizes primers of a unique chain length; however, they are twice as long as those synthesized by the polymerase-primase. The activity of the primase separated from the polymerase-primase is similar in all other respects to the intact polymerase-primase.  相似文献   

2.
The DNA polymerase activity of the near homogeneous, multisubunit DNA polymerase-primase from Drosophila melanogaster embryos has been compared to Escherichia coli DNA polymerase III core, DNA polymerase III, and DNA polymerase III holoenzyme. The rate of deoxynucleotide incorporation by the Drosophila polymerase on singly primed phi X174 DNA is similar to that observed with equivalent levels of DNA polymerase III holoenzyme in the absence of E. coli single-stranded DNA binding protein. However, analysis of the DNA products indicates that the Drosophila polymerase is less processive than DNA polymerase III holoenzyme, and closely resembles DNA polymerase III. The Drosophila polymerase-primase contains neither 3'-5' exonuclease nor RNase H-like activities, and catalyzes no significant pyrophosphate exchange. There is a low level of DNA-dependent ATPase activity which can be eliminated by a second glycerol gradient sedimentation (Kaguni, L.S., Rossignol, J.-M., Conaway, R.C., and Lehman, I.R. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2221-2225). Although lacking a 3'-5' exonuclease, the replication fidelity of the D. melanogaster polymerase is similar to that of E. coli DNA polymerase III holoenzyme which possesses such an activity.  相似文献   

3.
The DNA polymerase-primase from Drosophila melanogaster contains a cryptic 3'----5' exonuclease that can be detected after separation of the 182-kDa polymerase subunit from the four-subunit enzyme. To determine the specificity of excision of mispaired nucleotides by the exonuclease, we have utilized primed phi X174am3 single-stranded DNA containing a noncomplementary nucleotide at the 3'-primer terminus, opposite deoxyadenosine at position 587 in the amber3 codon of the template strand. In the absence of polymerization, the preference for excision of the mispaired nucleotide from the primer is C greater than A much greater than G. Excision under these conditions is inhibited by the addition of deoxyguanosine monophosphate. Under conditions of concomitant DNA synthesis, the preference for excision at this site becomes A = G much greater than C, and excision is insensitive to deoxyguanosine monophosphate. The high fidelity of DNA synthesis exhibited by the isolated 182-kDa polymerase subunit is not reduced by concentrations of deoxyguanosine monophosphate or adenosine monophosphate that inhibit proofreading by prokaryotic DNA polymerases. Thus, the 3'----5' exonuclease of the Drosophila DNA polymerase-primase participates in exonucleolytic proofreading by excising noncomplementary nucleotides prior to extension of the primer by polymerase action. The deoxynucleoside triphosphate analogs N2-(p-butylphenyl)deoxyguanosine triphosphate and N2-(p-butylphenyl)deoxyadenosine triphosphate are potent inhibitors of DNA polymerase alpha. Like calf thymus DNA polymerase delta, recently determined to have proofreading capability, DNA synthesis by the isolated Drosophila 182-kDa polymerase subunit was not inhibited by the two analogs. In contrast, DNA synthesis by the intact Drosophila polymerase-primase complex was inhibited greater than 95% by these analogs.  相似文献   

4.
5.
A DNA ligase has been purified approximately 2,100-fold, to near-homogeneity, from Drosophila melanogaster 6-12-h embryos and was shown to catalyze the formation of 3',5'-phosphodiester bonds. Polypeptides with molecular weights 83,000, 75,000, and 64,000 were observed when the purified enzyme was electrophoresed under denaturing conditions. These polypeptides were shown by partial proteolysis studies and two-dimensional gel analysis to be structurally related. The two smaller polypeptides were presumably derived from the largest, 83,000 molecular weight protein, by proteolysis during purification or in vivo. All three polypeptides formed enzyme-adenylylate complexes in the absence of DNA. Drosophila DNA ligase had a Stokes radius of 45 A, a sedimentation coefficient of 4.3 S, and a frictional ratio of 1.6, yielding a calculated molecular weight of 79,800. These studies indicate that DNA ligase from Drosophila embryos is a monomer. The purified ligase was free of detectable ATPase, nuclease, topoisomerase, and DNA polymerase activities. The enzyme exhibited an absolute requirement for ATP in the joining reaction. A divalent metal was required and N-ethylmaleimide inhibited the reaction. Formation of phosphodiester bonds by Drosophila ligase required the presence of 5'-phosphoryl and 3'-hydroxyl termini. The purified enzyme restored biological activity to endonucleolytically cleaved pBR322 DNA. The specific activity of Drosophila DNA ligase was highest in unfertilized eggs. Developing embryos had 5-10-fold more ligase activity than at any later time in development.  相似文献   

6.
Purification and properties of spleen necrosis virus DNA polymerase.   总被引:10,自引:10,他引:0  
DNA polymerase was purified to apparent electrophoretic homogeneity from virions of spleen necrosis virus (SNV). (SNV is a member of the reticuloendotheliosis group of avian ribodeoxyviruses). The SNV DNA polymerase appears to consist of a single polypeptide with a molecular weight of 68,000. The SNV DNA polymerase has a preference for Mn2+ for DNA synthesis with an RNA template and Mg2+ for DNA synthesis with a deoxyribohomopolymer template. At the optimum concentrations of divalent cation, the relative rates of DNA synthesis by SNV DNA polymerase with different template.primers were similar to the relative rates of DNA synthesis by an avian leukosis virus DNA polymerase, with the exception of a lower relative rate of DNA synthesis by SNV DNA polymerase with SNV RNA. However, in contrast to DNA synthesized by the avian leukosis virus DNA polymerase with a SNV RNA template, DNA synthesized by SNV DNA polymerase with an SNV RNA template did not hybridize to the SNV RNA. SNV DNA polymerase has RNase H activity which is antigenically distinct from the RNase H activity of avian leukosis-sarcoma virus DNA polymerase.  相似文献   

7.
A highly selective affinity labeling procedure has been applied to map the active center of DNA primase from the yeast Saccharomyces cerevisiae. Enzyme molecules that have been modified by covalent attachment of benzaldehyde derivatives of adenine nucleotides are autocatalytically labeled by incubation with a radioactive ribonucleoside triphosphate. The affinity labeling of primase requires a template DNA, is not affected by DNase and RNase treatments, but is sensitive to proteinase K. Both the p58 and p48 subunits of yeast DNA primase appear to participate in the formation of the catalytic site of the enzyme, although UV-photocross-linking with [alpha-32P]ATP locates the ribonucleoside triphosphate binding site exclusively on the p48 polypeptide. The fixation of the radioactive product has been carried out also after the enzymatic reaction. Under this condition the RNA primers synthesized by the DNA polymerase-primase complex under uncoupled DNA synthesis conditions are linked to both DNA primase and DNA polymerase. When DNA synthesis is allowed to proceed first, the labeled RNA chains are fixed exclusively to the DNA polymerase polypeptide. These results, in accord with previous data, have been used to propose a model illustrating the interactions and the putative roles of the polypeptides of the DNA polymerase-primase complex.  相似文献   

8.
9.
The DNA polymerase alpha-DNA primase complex from the human lymphoblast line HSC93 has been enriched to near homogeneity by using an immunoaffinity purification protocol which was developed earlier for the purification of the calf thymus enzyme (Nasheuer, H.-P. and Grosse, F. (1987) Biochemistry 26, 8458-8466). Immunoaffinity purified polymerase-primase from human cells consisted of four subunits displaying molecular weights of 195,000 and 180,000 for the DNA synthesizing alpha-subunit, of 68,000 for the beta-subunit, and of 55,000 and 48,000 for the primase-carrying gamma- and delta-subunit, respectively. The isoelectric pH values for the individual subunits were estimated from non-equilibrium pH gradients to be between 5.9 and 5.7 for the alpha-subunit, at 5.5 for the beta-subunit, and at 7.5 and 8.0 for the gamma- and delta-subunit, respectively. The purified polymerase-primase converted single-stranded phi X174 DNA into the double-stranded form in a primase-initiated reaction. During this process, 3-10 RNA primers were formed. RNA primers were about 11 nucleotides long. Elongation of existing RNA primers by the human polymerase-primase was semi-processive; following primer binding the DNA polymerase continuously incorporated 20 to 50 nucleotides, then it dissociated from the template DNA.  相似文献   

10.
Two forms of DNA primase stimulatory factor have been purified from mouse FM3A cells and shown to have RNase H activity. One of the factors, which consists of three polypeptides of 42,000, 41,000, and 27,000 daltons, was characterized in its properties as RNase H and DNA primase stimulatory factor. The nucleolytic activity of the factor specifically digested the RNA component of RNA-DNA hybrids in an endonucleolytic manner. The stimulation by the factor was observed in DNA synthesis by DNA primase-DNA polymerase alpha complex on unprimed DNA templates, and the DNA chains synthesized under these conditions in the presence of the factor were much shorter than those synthesized in its absence. The stimulatory effect of the factor on DNA primase activity was directly confirmed with DNA primase dissociated from DNA polymerase alpha by the observation of the increase in the number of synthesized oligoribonucleotides. The primer RNA synthesis by DNA primase-DNA polymerase alpha complex under the condition where DNA synthesis occurred was also significantly stimulated by the factor. Furthermore, under these conditions RNA primers were removed from DNA chains by the RNase H activity of the factor.  相似文献   

11.
12.
The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a Stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase gamma is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phi X174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase gamma as partially purified from several vertebrates.  相似文献   

13.
The mitochondrial DNA polymerase from embryos of Drosophila melanogaster has been examined with regard to template-primer utilization, processivity, and fidelity of nucleotide polymerization. The enzyme replicates predominantly single-stranded and double-stranded DNAs: the rate of DNA synthesis is greatest on the gapped homopolymeric template poly(dA).oligo(dT), while the highest substrate specificity is observed on single-stranded DNA templates of natural DNA sequence. Kinetic experiments and direct physical analysis of DNA synthetic products indicate that the Drosophila DNA polymerase gamma polymerizes nucleotides by a quasi-processive mechanism. The mitochondrial enzyme demonstrates a high degree of accuracy in nucleotide incorporation which is nearly identical with that of the replicative DNA polymerase alpha from Drosophila embryos. Thus, the catalytic properties of the near-homogeneous Drosophila DNA polymerase gamma are consistent with the in vivo requirements for mitochondrial DNA synthesis as described in a variety of animal systems.  相似文献   

14.
We have started to study a cloned genomic DNA fragment ~7 kb long (denoted as H55) from the 7B3-4 region in the X chromosome of Drosophila melanogaster. The major part of the fragment is a single-copy sequence. It directs the synthesis of mRNA that makes up ~0.1% of the cytoplasmic poly(A)+ RNA from Drosophila embryos. The H55 gene is split by an intervening sequence, yielding a large single-copy exon and a small repetitive 3′ exon represented by hundreds of copies in the genome. This repetitive sequence (“suffix”) is also present at the 3′ ends of ~2% of all cytoplasmic poly(A)+ RNA chains.  相似文献   

15.
Differential inhibition conditions were established for the DNA polymerase and RNase H activities of avian myeloblastosis virus (AMV) with ether-disrupted AMV and a purified enzyme preparation. The RNase H activity of ether-disrupted AMV with (rA)(n).(dT)(n) and (rA)(n).(dT)(11) as substrates was inhibited 80 to 100% by preincubation with NaF at a final reaction concentration of 27 to 30 mM. Under these conditions, the DNA polymerase activity was inhibited only 0 to 20%. Similar inhibitions were found with exogenous Rous sarcoma virus 35S and 70S RNA.DNA hybrid and phiX174 DNA.RNA hybrid as substrates. Studies were also performed with a purified enzyme preparation, in which the two activities essentially co-purified. The RNase H activity was inhibited >80% by 150 mM KCl with three different hybrid substrates, whereas the DNA polymerase activity was uninhibited. The DNA polymerase was completely inactivated by heat denaturation at 41 C or by omission of the deoxytriphosphates from the reaction mixture; the RNase H remained active. These differential inhibition conditions were used to compare the size of the DNA product synthesized with and without simultaneous RNase H action and to examine the effect of inhibition of the DNA polymerase on the size of the RNase H products. The size of the products of one activity was not affected by inhibition of the other activity. These results suggest that the AMV DNA polymerase and RNase H are not coupled mechanistically.  相似文献   

16.
Specific antisera to purified DNA polymerase alpha from embryos of Drosophila melanogaster and to two of the four constituent subunits (alpha, beta, gamma, and delta) were prepared. These antibodies have revealed the following features of the enzyme. (i) The Mr = 148,000 alpha subunit is very likely derived by in vitro proteolysis from polypeptides with molecular weights of 185,000 and 166,000 that are present in vivo. (ii) The Mr = 60,000 beta subunit occurs in rapidly replicating embryos as both an 85,000- and a 60,000-dalton form, but predominantly as a 60,000-dalton form in more slowly replicating cultured cells. (iii) There is no detectable immunologic cross-reactivity between the four subunits. (iv) There is an abundance of antigenic material in embryos that co-migrates with the delta subunit of the purified enzyme during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

17.
The DNA polymerase-primase from Drosophila melanogaster has been separated into its constituent polymerase and primase subunits by sedimentation in glycerol gradients containing 50% ethylene glycol. Both activities have been obtained in good yield. The properties of the 182-kDa polymerase subunit are similar to those of the intact four-subunit enzyme. However, there are three significant differences. (i) The polymerase activity of the 182-kDa subunit shows an increased thermolability; (ii) the pause sites during replication of singly primed, single-stranded circular DNA by the 182-kDa subunit are altered; and (iii) unlike the intact enzyme, the 182-kDa subunit is highly processive in the presence of the single-stranded DNA-binding protein of Escherichia coli.  相似文献   

18.
The DNA polymerase of early embryos of Drosophila melanogaster has been purified to near-homogeneity. The purified enzyme gave a single, catalytically active protein band after polyacrylamide gel electrophoresis, under nondenaturing conditions. Four polypeptides with molecular weights 43,000, 46,000, 58,000, and 148,000 were resolved when this band was electrophoresed under denaturing conditions. At high ionic strengths, the DNA polymerase had a sedimentation coefficient of 8.7 S, a Stokes radius of 78 A and frictional ratio of 1.81, parameters that yield a molecular weight of 280,000. The purified DNA polymerase possessed no detectable endo- or exodeoxyribonuclease, ATPase, or RNA polymerase activity. Using an "activated" DNA template-primer, the enzyme had a pH optimum of 8.5. It was stimulated by (NH4)2SO4, KCl, and to a lesser extent, NaCl. A divalent metal cation was absolutely required; MgCl2 stimulating activity 7-fold more than MnCl2. It was inhibited by low concentrations of N-ethylmaleimide and Aphidicolon. Thus the DNA polymerase of D. melanogaster resembles most closely the alpha-DNA polymerases that have been purified from mammalian cells.  相似文献   

19.
The mitochondrial DNA (kinetoplast DNA) of the trypanosomatid Crithidia fasciculata consists of minicircles and maxicircles topologically interlocked in a single network per cell. Individual minicircles replicate unidirectionally from either of two replication origins located 180 degrees apart on the minicircle DNA. Initiation of minicircle leading-strand synthesis involves the synthesis of an RNA primer which is removed in the last stage of replication. We report here the purification to near homogeneity of a structure-specific DNA endo-nuclease based on the RNase H activity of the enzyme on a poly(rA).poly(dT) substrate. RNase H activity gel analysis of whole cell and kinetoplast extracts shows that the enzyme is enriched in kinetoplast fractions. The DNA endonuclease activity of the enzyme is specific for DNA primers annealed to a template strand and requires an unannealed 5' tail. The enzyme cleaves 3' of the first base paired nucleotide releasing the intact tail. The purified enzyme migrates as a 32 kDa protein on SDS gels and has a Stoke's radius of 21.5 A and a sedimentation coefficient of 3.7 s, indicating that the protein is a monomer in solution with a native molecular mass of 32.4 kDa. These results suggest that the enzyme may be involved in RNA primer removal during minicircle replication.  相似文献   

20.
Nuclei free of RNase activity were isolated from 3-hour-imbibed wheat (var. Yamhill) embryos by centrifugation through a discontinuous gradient of Percoll. The maximum rate of RNA synthesis observed in these nuclei was approximately 5 picomoles [(3)H]UTP per milligram DNA per minute. Two monovalent cation optima were found when measured in the presence of 15 millimolar MgCl(2) or 2 millimolar MnCl(2); 15 and 75 millimolar (NH(4))(2)SO(4). At the high monovalent cation optimum, the rate of RNA synthesis was linear for the first 10 to 15 minutes of incubation and still increasing after 3 hours. RNA synthesized in vitro (30-minute pulse followed by a 30-minute chase) showed distinct 18 and 26S RNA peaks comprising 13 and 17% of the total radioactivity, respectively. The over-all pattern of RNA synthesized in vitro was similar to the in vivo pattern. Approximately 40 to 50% of the RNA synthesized was inhibited by alpha-amanitin at 4 micrograms per milliliter. The newly synthesized 6 to 10S RNA appeared to be selectively inhibited by alpha-amanitin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号