首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The calcium-dependency of the process of light emission has been investigated for the photoproteins aequorin and obelin.2. The experimental curves of light production, expressed as a percentage of the maximal rate of utilisation, versus pCa are accurately predicted by the cooperative action of at least 2Ca2+ for aequorin and at least 3Ca2+ for obelin.3. At low total monovalent cation concentrations, a pH change from 6.8 to 7.1 shifts the light production vs pCa curve by approx. 0.2 pCa units to the right for aequorin, while that for obelin is shifted by some 0.37 pCa units.4. Other monovalent cations, such as Na+ are able to compete with Ca2+ for the active sites of aequorin and also shift the light production vs pCa curve to the right. There is no apparent change in the calcium stoichiometry for light production under these conditions.5. The same calcium stoichiometry for light emission was also obtained for aequorin or obelin in the presence of either unbuffered Ca2+ solutions or of calcium/EGTA buffers.  相似文献   

2.
The luminescence of aequorin, a useful tool for studying intracellular Ca2+, was recently found to be inhibited by the free EDTA and EGTA that are present in calcium buffers. In the present study we have examined the effect of the free forms of various chelators in the calibration of [Ca2+] with aequorin. Free EDTA and EGTA in low-ionic-strength solutions strongly inhibited the Ca2+-triggered luminescence of aequorin, causing large errors in the calibration of [Ca2+] (approx. 2 pCa units), whereas in solutions containing 150mM-KCl, errors were relatively small (0.2-0.3 pCa units). Citric acid in low-ionic-strength solutions and [(carbamoylmethyl)imino]diacetic acid in high-ionic-strength solutions showed no inhibition and did not cause detectable error in the calibration of [Ca2+], indicating that they are better chelators than EDTA and EGTA for use with aequorin.  相似文献   

3.
1. The effect of K+, Na+, Mg2+ and pH upon the rate of aequorin utilization has been investigated in the presence of Ca2+. 2. The aequorin light emission in a medium simulating the in vivo cationic conditions for barnacle muscle fibres indicates that two Ca2+ are apparently involved in this process for free calcium concentrations higher than approx. 10(-5) M. However, for free calcium concentrations lower than 10(-6) M, the intensity of light emitted by aequorin shows a steeper dependency upon [Ca2+] than the square low relationship, indicating that a third Ca2+ should be involved in the process of aequorin light emission, as it has been previously predicted (Moisescu, D.G., Ashley, C.C. and Campbell, A.K. (1975) Biochim. Biophys. Acta. 396, 133-140). 3. The inhibitory effect of physiologically occurring cations upon the aequorin light emission can be explained by the cooperative action of two cations, competing with Ca2+ for the reactive sites on aequorin. 4. At a given concentration, Na2+ was found to have a stronger inhibitory effect upon the aequoring light emission than K+. 5. The experiments indicate a strong interaction between Na+ and K+ in this inhibitory process, since for a given total concentration of monovalent cations, a mixture containing both Na+ and K+ has a larger inhibitory effect on the aequorin light response than solutions containing either Na+ or K+ alone. 6. All other interactions between K+, Na+, H+ and Mg2+ appear to be weak. 7. The reaction schemes used for the explanation of these and other published results on aequorin (Moisescu, D.G., Ashley, C.C. and Campbell, A.K. (1975) Biochim. Biophys, Acta 396, 133-140 and Blinks, J.R. (1973) Eur. J. Cardiol. 1, 135-142) are described, and the 'absolute' binding constants of all physiologically occurring cations for aequorin have been determined. 8. Based on these parameters one can make accurate quantitative predictions for the aequoring light response under a variety of ionic conditions, and this suggests that it is possible to determine absolute free calcium concentrations providing that the ionic composition of the solutions is known, and that the relative rate of aequorin utilization is higher than 0.005.  相似文献   

4.
A cDNA encoding the Ca2+-regulated photoprotein of the bioluminescent marine hydroid Obelia geniculata was cloned and sequenced. The cDNA is a 774 bp fragment containing two overlapping open reading frames, one of which contained 585 bp encoding a 195 amino acid polypeptide which obviously has the primary structure of the apoprotein of a calcium-regulated photoprotein. Many of the residues are identical to those in other Ca2+-regulated photoproteins: 86% compared with that from Obelia longissima, 76% with that from Clytia (Phialidium), 64% with that from Aequorea, and 64% with that from Mitrocoma(Halistaura). The obelin from O. geniculata was overexpressed in Escherichia coli, refolded from inclusion bodies, and purified. The yield of highly purified recombinant protein was 55-80 mg/L of LB medium. O. geniculata obelin has absorption maxima at 280 and 460 nm and a shoulder at approximately 310 nm. The calcium-discharged protein loses visible absorption but exhibits a new absorption maximum at 343 nm. The bioluminescence of the obelin from O. geniculata is blue (lambda(max) = 495 nm). In contrast, the fluorescence of the calcium-discharged protein is yellow-green (lambda(max) = 520 nm; excitation at 340 nm). This is in sharp contrast to aequorin in which the bioluminescence and fluorescence emission spectra of the calcium-discharged protein are almost identical (lambda(max) = 465 nm). The Ca2+ concentration-effect curve for O. geniculata obelin is similar to those of many other photoproteins: at [Ca2+] below approximately 10(-8) M, calcium-independent luminescence is observed, and at [Ca2+] approximately 10(-3) M, the luminescence reaches a maximum. Between these extremes, the curve spans a vertical range of almost 8 log units with a maximum slope on a log-log plot of about 2.5. In the absence of Mg2+ the rate constant for the rise of bioluminescence determined by the stopped-flow technique is about 450 s(-1). The effects of Mg2+ on the kinetics of bioluminescence are complicated, but at all concentrations studied they are relatively small compared to the corresponding effects on aequorin luminescence. At least with respect to speed and sensitivity to Mg2+, the obelins from both O. longissima and O. geniculata would appear to be more suitable than aequorin for use as intracellular Ca2+ indicators.  相似文献   

5.
1. The kinetics and stoicheiometry of the Ca2+-activated luminescent reaction of the photoprotein obelin were studied at different temperatures and in the presence of various substances, including the physiologically occurring cations K+, Na+, Ca2+, Mg2+ and H+. 2. The results suggest Ca2+-independent rates of rise and fall in obelin luminescence following sudden changes in [Ca2+] and indicate that changes in [Ca2+] over the range 1 · 10?6?3 · 10?4 M are followed significantly faster by the obelin response (approx. 3 ms delay at 20°C) than by the aequorin response (approx. 10 ms delay at 20°C). 3. Obelin was found to emit low-intensity light (less than 10?6 of the maximum Ca2+-activated response), which was independent of Ca2+ at concentrations below about 10?7 M. The level of this Ca2+-independent light emission is sensitive to temperature and the ionic composition of the solution. 4. The log-log plot of light intensity against ionized Ca indicates a maximum slope of 2.5, suggesting the involvement of three Ca ions in the luminescent reaction. 5. Increases in the concentration of K+, Na+, Mg2+ and H+ generally shift the Ca2+ activation curve for obelin toward higher Ca2+ concentrations. These cations can also affect the maximum rate of obelin utilization at more extreme concentrations. 6. The maximal rate of obelin utilization was also affected to varying degrees by the presence of uncharged substances such as glucose, sucrose and polyvinylpyrrolidone. However, neither the sensitivity of obelin to Ca2+ nor the quantum yield were modified by these substances. 7. Caffeine (less than 20 mM), procaine (less than 20 mM) and sodium dantrolene (saturated solution), substances known to modify cellular Ca2+ movements, had little effect on the Ca2+-induced luminescent reaction. The general anaesthetics chlorpromazine and halothane appeared to lower greatly the quantum yield without, however, modifying the maximum rate of obelin utilization. 8. A scheme of reaction for obelin activation by Ca2+ is presented which adequately explains the experimental observations and allows one to make accurate predictions regarding the relative obelin respones under a variety of ionic conditions at room temperature.  相似文献   

6.
The bioluminescence spectra from the Ca2+-regulated photoproteins aequorin (lambdamax=469 nm) and obelin (lambdamax=482 nm) differ because aequorin has an H-bond from its Tyr82 to the bound coelenteramide, not present in obelin at the corresponding Phe88. Substitutions of this Phe88 by Tyr, Trp, or His shifted the obelin bioluminescence to shorter wavelength with F88Y having lambdamax=453 nm. Removal of the H-bond by the substitution of Y82F in aequorin shifted its bioluminescence to lambdamax=501 nm. All mutants were stable with good activity and were expressible in mammalian cells, thereby demonstrating potential for monitoring multiple events in cells using multi-color detection.  相似文献   

7.
The luminescence of obelin is initiated by NaOCl in a reaction mixture containing no calcium. The addition of Mn2+ enhances the light emission >300-fold. Sodium azide and histidine, as singlet oxygen quenchers, inhibit NaOCl-activated obelin luminescence in the presence or absence of Mn2+. This suggests that the addition of NaOCI to the mixture causes singlet oxygen formation (stimulated by Mn2+ ions), and singlet oxygen initiates the light-emitting reaction.  相似文献   

8.
Obelin from the hydroid Obelia longissima and aequorin are members of a subfamily of Ca(2+)-regulated photoproteins that is a part of the larger EF-hand calcium binding protein family. On the addition of Ca(2+), obelin generates a blue bioluminescence emission (lambda(max) = 485 nm) as the result of the oxidative decarboxylation of the bound substrate, coelenterazine. The W92F obelin mutant is noteworthy because of the unusually high speed with which it responds to sudden changes of [Ca(2+)] and because it emits violet light rather than blue due to a prominent band with lambda(max) = 405 nm. Increase of pH in the range from 5.5 to 8.5 and using D(2)O both diminish the contribution of the 405 nm band, indicating that excited state proton transfer is involved. Fluorescence model studies have suggested the origin of the 485 nm emission as the excited state of an anion of coelenteramide, the bioluminescence reaction product, and 405 nm from the excited neutral state. Assuming that the dimensions of the substrate binding cavity do not change during the excited state formation, a His22 residue within hydrogen bonding distance to the 6-(p-hydroxy)-phenyl group of the excited coelenteramide is a likely candidate for accepting the phenol proton to produce an ion-pair excited state, in support of recent suggestions for the bioluminescence emitting state. The proton transfer could be impeded by removal of the Trp92 H-bond, resulting in strong enhancement of a 405 nm band giving the violet color of bioluminescence. Comparative analysis of 3D structures of the wild-type (WT) and W92F obelins reveals that there are structural displacements of certain key Ca(2+)-ligating residues in the loops of the two C-terminal EF hands as well as clear differences in hydrogen bond networks in W92F. For instance, the hydrogen bond between the side-chain oxygen atom of Asp169 and the main-chain nitrogen of Arg112 binds together the incoming alpha-helix of loop III and the exiting alpha-helix of loop IV in WT, providing probably concerted changes in these EF hands on calcium binding. But this linkage is not found in W92F obelin. These differences apparently do not change the overall affinity to calcium of W92F obelin but may account for the kinetic differences between the WT and mutant obelins. From analysis of the hydrogen bond network in the coelenterazine binding cavity, it is proposed that the trigger for bioluminescence reaction in these Ca(2+)-regulated photoproteins may be a shift of the hydrogen bond donor-acceptor separations around the coelenterazine-2-hydroperoxy substrate, initiated by small spatial adjustment of the exiting alpha-helix of loop IV.  相似文献   

9.
Aequorin is one of several photoproteins that emits visible light upon binding to calcium ions. It has been widely used as a Ca(2+)-indicator and as an alternative highly sensitive bioluminescent label in binding assays. The apoprotein of aequorin binds an imidazopyrazine compound (coelenterazine) and molecular oxygen to form a stable photoprotein complex. Upon addition of calcium, the photoprotein undergoes a conformational change leading to the oxidation of the chromophore with the release of CO(2) and blue light. To gain more information of structure-function relationships within the photoprotein that will aid in the design of mutants suitable for site-specific conjugation and immobilization, polymerase chain reaction (PCR)-based site-directed mutagenesis was employed to produce five different aequorin mutants. The five mutants included a cysteine-free mutant and four other mutants with single cysteine residues at selected positions within the protein. The aequorin mutants exhibited different bioluminescence emission characteristics with two mutants showing a decrease in relative light production in comparison to the cysteine-free mutant. Additionally, circular dichroism (CD) spectra revealed that the single amino acid substitutions made for two of the aequorin mutants did alter their secondary structures.  相似文献   

10.
Light-sensitive Ca(2+) -regulated photoproteins are responsible for the bright bioluminescence of ctenophores. Using functional screening, four full-size cDNA genes encoding the same 208-amino-acid polypeptide were isolated from two independent cDNA libraries prepared from two Beroe abyssicola specimens. Sequence analysis revealed three canonical EF-hand calcium-binding sites characteristic of Ca(2+) -regulated photoproteins, but a very low degree of sequence identity (27-29%) with aequorin-type photoproteins, despite functional similarities. Recombinant berovin was expressed in Escherichia coli cells, purified, converted to active photoprotein and characterized. Active berovin has absorption maxima at 280 and 437 nm. The Ca(2+) -discharged protein loses visible absorption, but exhibits a new absorption maximum at 335 nm. The berovin bioluminescence is blue (λ(max) = 491 nm) and a change in pH over the range 6.0-9.5 has no significant effect on the light emission spectrum. By contrast, the fluorescence of Ca(2+) -discharged protein (λ(ex) = 350 nm) is pH sensitive: at neutral pH the maximum is at 420 nm and at alkaline pH there are two maxima at 410 and 485 nm. Like native ctenophore photoproteins, recombinant berovin is also inactivated by light. The Ca(2+) concentration-effect curve is a sigmoid with a slope on a log-log plot of ~ 2.5. Although this curve for berovin is very similar to those obtained for obelin and aequorin, there are evident distinctions: berovin responds to calcium changes at lower concentrations than jellyfish photoproteins and its Ca(2+) -independent luminescence is low. Recombinant berovin was successfully expressed in mammalian cells, thereby demonstrating potential for monitoring intracellular calcium. Database The nucleotide sequences have been deposited in the GenBankTM/EBI Data Bank with accession numbers: apoberovin cDNA genes, JN673813 (BA1), JN673814 (BA2), JN673815 (BA3), JN673816 (BA4); fragment 18S rRNA, JN673817 (BA-rRNA5).  相似文献   

11.
12.
Isolation and properties of various molecular forms of aequorin.   总被引:4,自引:3,他引:1       下载免费PDF全文
The photoprotein aequorin emits light by an intramolecular reaction when a trace of Ca2+ is added. The samples of aequorin that were purified by the conventional methods of column chromatography were separated by high-performance liquid chromatography into eight molecular forms (isoaequorins), which were designated aequorins A-H. Aequorins A, C and F were obtained in crystalline states. A wide range of properties were studied with aequorins A-F, which were essentially pure. These six isoaequorins showed relatively small differences in their spectroscopic properties, but their values of A0.1%/1 cm, 280 were found to be close to 3.0, about 10% more than the previously reported value of 2.70-2.71 that was obtained with the samples of conventionally purified aequorin. The Mr values ranged from 20,100 (aequorin F) to 22,800 (aequorin A), the luminescence activities ranged from 4.35 X 10(15) photons/mg (aequorin A) to 5.16 X 10(15) photons/mg (aequorin F), and the first-order reaction rate constants of luminescence ranged from 0.95 s-1 (aequorin A) to 1.33 s-1 (aequorin F). As regards sensitivity to Ca2+, aequorin D was the most sensitive, having a sensitivity about 0.4-0.5 pCa unit above that of the least sensitive kind (aequorin A).  相似文献   

13.
Ionized calcium concentrations in squid axons   总被引:22,自引:10,他引:12       下载免费PDF全文
Values for ionized [Ca] in squid axons were obtained by measuring the light emission from a 0.1-mul drop of aequorin confined to a plastic dialysis tube of 140-mum diameter located axially. Ionized Ca had a mean value of 20 x 10(-9) M as judged by the subsequent introduction of CaEGTA/EGTA buffer (ratio ca. 0.1) into the axoplasm, and light measurement on a second aequorin drop. Ionized Ca in axoplasma was also measured by introducing arsenazo dye into an axon by injection and measuring the Ca complex of such a dye by multichannel spectrophotometry. Values so obtained were ca. 50 x 10(-9) M as calibrated against CaEGTA/EGTA buffer mixtures. Wth a freshly isolated axon in 10 mM Ca seawater, the aequorin glow invariably increased with time; a seawater [Ca] of 2-3 mM allowed a steady state with respect to [Ca]. Replacement of Na+ in seawater with choline led to a large increase in light emission from aequorin. Li seawater partially reversed this change and the reintroduction of Na+ brought light levels back to their initial value. Stimulation at 60/s for 2-5 min produced an increase in aequorin glow about 0.1% of that represented by the known Ca influx, suggesting operationally the presence of substantial Ca buffering. Treatment of an axon with CN produced a very large increase in aequorin glow and in Ca arsenazo formation only if the external seawater contained Ca.  相似文献   

14.
The photoprotein aequorin, which emits light as a nonlinear function of calcium concentration, is often used to measure intracellular calcium. In the presence of inhomogeneities or fluctuations of calcium concentration, the nonlinearity results in discrepancies between mean calcium concentration estimated from average aequorin light and the true mean. It is usually assumed that the error is an overestimation, but in the presence of large calcium fluctuations, errors of either direction are possible. Here we show that for aequorin to overestimate the mean calcium, the point in the calcium-light plane representing the true mean calcium and measured mean aequorin light must lie in the convex envelope of that segment of the aequorin response curve that lies between the minimum and maximum values of fluctuating calcium, and must lie above the curve. By explicitly constructing this region, we derive a quartic equation that gives the largest measured calcium for which aequorin can be assumed to give an overestimate, as a function of the maximum calcium fluctuation. In particular, if calcium fluctuations do not exceed 1 mM, aequorin measurements below 7.25 microM may be assumed to overestimate the true mean calcium.  相似文献   

15.
The photoprotein aequorin isolated from the jellyfish Aequorea emits blue light in the presence of Ca2+ by an intramolecular process that involves chemical transformation of the coelenterazine moiety into coelenteramide and CO2. Because of its high sensitivity to Ca2+, aequorin has widely been used as a Ca2+ indicator in various biological systems. We have replaced the coelenterazine moiety in the protein with several synthetic coelenterazine analogues, providing semi-synthetic Ca2+-sensitive photoproteins. One of the semi-synthetic photoproteins, derived from coelenterazine analogue (II) (with an extra ethano group), showed highly promising properties for the measurement of Ca2+, namely (1) the rise time of luminescence in response to Ca2+ was shortened by approx. 4-fold compared with native aequorin and (2) the luminescence spectrum showed two peaks at 405 nm and 465 nm and the ratio of their peak heights was dependent on Ca2+ concentration in the range of pCa 5-7, thus allowing the determination of [Ca2+] directly from the ratio of two peak intensities. Coelenterazine analogue (I) (with a hydroxy group replaced by an amino group) was also incorporated into apo-aequorin, yielding a Ca2+-sensitive photoprotein, which indicates that an electrostatic interaction between the phenolate group in the coelenterazine moiety and some cationic centre in apo-aequorin is not important in native aequorin, contrary to a previous suggestion.  相似文献   

16.
Semi-synthetic aequorins with improved sensitivity to Ca2+ ions.   总被引:3,自引:1,他引:2       下载免费PDF全文
Thirty-seven coelenterazine analogues were synthesized and incorporated into apo-aequorin, yielding 30 semi-synthetic aequorins that have the capacity to emit a significant amount of light in the presence of Ca2+. The properties of resultant photoproteins were investigated. The most prominent feature of those photoproteins was the wide range in their sensitivities to Ca2+ concentration. The relative intensity of Ca2+-triggered luminescence of the photoproteins ranged from 0.01 to 190 when compared with natural aequorin (relative intensity 1.0) at pCa 6 for the cases where the relative intensity is less than 1 and at pCa 7 for the cases where the relative intensity is higher than 1. Eight of the semi-synthetic aequorins belonged to the class of e-aequorin. With two of those photoproteins, the degree of dependence of the luminescence intensity ratio I400/I465 on pCa was greater than that with e-aequorin, suggesting that these two photoproteins are possibly superior to e-aequorin in measuring Ca2+ concentration by the ratio method.  相似文献   

17.
Adrenomedullin (ADM) is an endogenous peptide with favorable hemodynamic effects in vivo. In this study, we characterized the direct functional effects of ADM in isolated preparations from human atria and ventricles. In electrically stimulated human nonfailing right atrial trabeculae, ADM (0.0001-1 micromol/l) increased force of contraction in a concentration-dependent manner, with a maximal increase by 35 +/- 8% (at 1 micromol/l; P < 0.05). The positive inotropic effect was accompanied by a disproportionate increase in calcium transients assessed by aequorin light emission [by 76 +/- 20%; force/light ratio (DeltaF/DeltaL) 0.58 +/- 0.15]. In contrast, elevation of extracellular calcium (from 2.5 to 3.2 mmol/l) proportionally increased force and aequorin light emission (DeltaF/DeltaL 1.0 +/- 0.1; P < 0.05 vs. ADM). Consistent with a cAMP-dependent mechanism, ADM (1 micromol/l) increased atrial cAMP levels by 90 +/- 12%, and its inotropic effects could be blocked by the protein kinase A (PKA) inhibitor H-89. ADM also exerted positive inotropic effects in failing atrial myocardium and in nonfailing and failing ventricular myocardium. The inotropic response was significantly weaker in ventricular vs. atrial myocardium and in failing vs. nonfailing myocardium. In conclusion, ADM exerts Ca(2+)-dependent positive inotropic effects in human atrial and less-pronounced effects in ventricular myocardium. The inotropic effects are related to increased cAMP levels and stimulation of PKA. In heart failure, the responsiveness to ADM is reduced in atria and ventricles.  相似文献   

18.
Contraction in vertebrate striated muscle is known to be dependent upon the binding of calcium ions to the regulatory protein troponin C (TnC). Our electrical (Donnan potential) studies of the subsarcomeric regions have revealed an electrical switching mechanism, which is sensitive to both cation concentration and to particular anions. In a buffer containing phosphate and chloride ions and at 2.7 mM Mg2+ we observe a single charge transition at pCa50 6.8 in both A- and I-bands. At zero Mg2+ the pCa50 of the A-band transition is shifted to 8.0 and the I-band shows two transitions (pCa50 approximately 6.8 and approximately 8.2). Increasing [Mg2+] to 4.5 mM produces a complex effect between pCas 7 and 9 in both bands. All effects are abolished at 9 mM Mg2+. In a chloride-only buffer (imidazole) at zero Mg2+ the direction of the charge transitions is reversed. In addition, two transitions (pCa50 approximately 8.5 and approximately 7.0) are evident in the A-band and three in the I-band (pCa50 approximately 8.5, approximately 7.4, approximately 6.7). In the presence of Mg2+, again the effects of pCa upon the Donnan potential are complex. In the A-band at 2.7 mM Mg2+ two transitions of opposite sign predominate (pCa approximately 7 and approximately 8), whilst in the I band a single transition (pCa approximately 8.3) occurs in the same direction as that observed in phosphate buffer. At 4.5 mM Mg2+ the 'W' shape observed in the corresponding phosphate buffer is preserved in both bands with similar pCa50s. This shape is also apparent in the 9 mM Mg2+ solution. In these two buffer systems, the magnitude of the charge change in terms of electron binding is far larger than expected from simple Ca2+/Mg2+ binding to troponin. In an acetate-only buffer, however, the Donnan potentials of the A-band and I-band were very similar in magnitude and the charge change across the full pCa curve is close to the expected value for Ca2+/Mg2+ binding to troponin. We speculate that titin has a role in the calcium activation of striated muscle in vertebrates for four reasons. First, the effects of long-term storage of the glycerinated muscle; second, the action of [Mg2+]ions; third the effect of anions; and fourth, our published and unpublished observations of sarcomere-length dependence. We also demonstrate the validity of our methodology, relating the charge transitions that we observe to cation-binding studies of a more traditional nature.  相似文献   

19.
Ca2+-regulated photoproteins are members of the EF-hand calcium-binding protein family. The addition of Ca2+ produces a blue bioluminescence by triggering a decarboxylation reaction of protein-bound hydroperoxycoelenterazine to form the product, coelenteramide, in an excited state. Based on the spatial structures of aequorin and several obelins, we have postulated mechanisms for the Ca2+ trigger and for generation of the different excited states that are the origin of the different colors of bioluminescence. Here we report the crystal structure of the Ca2+-discharged photoprotein obelin at 1.96-A resolution. The results lend support to the proposed mechanisms and provide new structural insight into details of these processes. Global conformational changes caused by Ca2+ association are typical of the class of calcium signal modulators within the EF-hand protein superfamily. Accommodation of the Ca2+ ions into the loops of the EF-hands is seen to propagate into the active site of the protein now occupied by the coelenteramide where there is a significant repositioning and flipping of the His-175 imidazole ring as crucially required in the trigger hypothesis. Also the H-bonding between His-22 and the coelenterazine found in the active photoprotein is preserved at the equivalent position of coelenteramide, confirming the proposed rapid excited state proton transfer that would lead to the excited state of the phenolate ion pair, which is responsible for the blue emission of bioluminescence.  相似文献   

20.
Estimates of cytoplasmic Ca2+ concentration ([Ca2+]i) were made essentially simultaneously in the same intact frog skeletal muscle fibers with aequorin and with Ca-selective microelectrodes. In healthy fibers under truly resting conditions [Ca2+]i was too low to be measured reliably with either technique. The calibration curves for both indicators were essentially flat in this range of [Ca2+], and the aequorin light signal was uniformly below the level to be expected in the total absence of Ca2+. When [Ca2+]i had been raised to a stable level below the threshold for contracture by increasing [K+]o to 12.5 mM, [Ca2+]i was 38 nM according to aequorin and 59 nM according to the Ca-selective microelectrodes. These values are not significantly different. Our estimates of [Ca2+]i are lower than most others obtained with microelectrodes, probably because the presence of aequorin in the cells allowed us to detect damaging microelectrode impalements that otherwise we would have had no reason to reject. The observation that the light emission from aequorin-injected fibers in normal Ringer solution was below the level expected from the Ca(2+)-independent luminescence of aequorin in vitro was investigated further, with the conclusion that the myoplasm contains a diffusible macromolecule (between 10 and 30 kD) that interacts with aequorin to reduce light emission in the absence of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号