共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kedishvili NY Chumakova OV Chetyrkin SV Belyaeva OV Lapshina EA Lin DW Matsumura M Nelson PS 《The Journal of biological chemistry》2002,277(32):28909-28915
All-trans-retinoic acid is a metabolite of vitamin A (all-trans-retinol) that functions as an activating ligand for a family of nuclear retinoic acid receptors. The intracellular levels of retinoic acid in tissues are tightly regulated, although the mechanisms underlying the control of retinoid metabolism at the level of specific enzymes are not completely understood. In this report we present the first characterization of the retinoid substrate specificity of a novel short-chain dehydrogenase/reductase (SDR) encoded by RalR1/PSDR1, a cDNA recently isolated from the human prostate (Lin, B., White, J. T., Ferguson, C., Wang, S., Vessella, R., Bumgarner, R., True, L. D., Hood, L., and Nelson, P. S. (2001) Cancer Res. 61, 1611-1618). We demonstrate that RalR1 exhibits an oxidoreductive catalytic activity toward retinoids, but not steroids, with at least an 800-fold lower apparent K(m) values for NADP+ and NADPH versus NAD+ and NADH as cofactors. The enzyme is approximately 50-fold more efficient for the reduction of all-trans-retinal than for the oxidation of all-trans-retinol. Importantly, RalR1 reduces all-trans-retinal in the presence of a 10-fold molar excess of cellular retinol-binding protein type I, which is believed to sequester all-trans-retinal from nonspecific enzymes. As shown by immunostaining of human prostate and LNCaP cells with monoclonal anti-RalR1 antibodies, the enzyme is highly expressed in the epithelial cell layer of human prostate and localizes to the endoplasmic reticulum. The enzymatic properties and expression pattern of RalR1 in prostate epithelium suggest that it might play a role in the regulation of retinoid homeostasis in human prostate. 相似文献
4.
The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for the functions of TcpX and TcpB, the two corresponding genes (tcpX and tcpB) were cloned, overexpressed, and purified in Escherichia coli. TcpX was purified as a C-terminal His tag fusion (TcpXH) and found to possess NADH:flavin oxidoreductase activity capable of reducing either FAD or flavin mononucleotide (FMN) with NADH as the reductant. TcpXH had no activity toward NADPH or riboflavin. Coupling of TcpXH and TcpA demonstrated that TcpXH provided FADH2 for TcpA catalysis. Among several substrates tested, TcpB showed the best activity for quinone reduction, with FMN or FAD as the cofactor and NADH as the reductant. TcpB could not replace TcpXH in a coupled assay with TcpA for 2,4,6-TCP metabolism, but TcpB could enhance TcpA activity. Further, we showed that TcpB was more effective in reducing 6-chlorohydroxyquinone than chemical reduction alone, using a thiol conjugation assay to probe transitory accumulation of the quinone. Thus, TcpB was acting as a quinone reductase for 6-chlorohydroxyquinone reduction during 2,4,6-TCP degradation. 相似文献
5.
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl--D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase. 相似文献
6.
7.
The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease. 相似文献
8.
HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein 总被引:5,自引:0,他引:5
Xu Z Liang L Wang H Li T Zhao M 《Biochemical and biophysical research communications》2003,311(4):1057-1066
One of the most frequent allelic deletions in hepatocellular carcinoma (HCC) has been found at chromosome 8p21-23. We reported here the identification and characterization of a novel gene for a hepatocellular carcinoma related protein 1 (HCRP1) localized at 8p22, which was isolated by positional candidate cloning. The expression of the gene for HCRP1 was most abundant in normal human liver tissue and significantly reduced or undetected in HCC tissues. The analysis of subcellular distribution showed that HCRP1 diffused in the cytoplasm with a significant fraction accumulated in the nuclei. After introduction of the sense and antisense cDNA of HCRP1 into HCC cell line SMMC-7721, we observed that the overexpression of HCRP1 significantly inhibited both anchorage-dependent and anchorage-independent cell growth in vitro. Using the transgenic short hairpin RNA (shRNA) to knock down the expression of HCRP1 gene in the other HCC cell line BEL-7404 resulted in the cell growth greatly enhanced. Moreover, reduction of the HCRP1 gene expression could also elevate the invasive ability of BEL-7404 cells. Our results strongly suggest that HCRP1 might be a growth inhibitory protein and associated with decreasing the invasion of HCC cells. 相似文献
9.
10.
11.
12.
13.
Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase 下载免费PDF全文
Time-resolved flavin fluorescence anisotropy studies on glutathione reductase (GR) have revealed a remarkable new phenomenon: wild-type GR displays a rapid process of fluorescence depolarization, that is absent in mutant enzymes lacking a nearby tyrosine residue that blocks the NADPH-binding cleft. Fluorescence lifetime data, however, have shown a more rigid active-site structure for wild-type GR than for the tyrosine mutants. These results suggest that the rapid depolarization in wild-type GR originates from an interaction with the flavin-shielding tyrosine, and not from restricted reorientational motion of the flavin. A novel mechanism of fluorescence depolarization is proposed that involves a transient charge-transfer complex between the tyrosine and the light-excited flavin, with a concomitant change in the direction of the emission dipole moment of the flavin. This interaction is likely to result from side-chain relaxation of the tyrosine in the minor fraction of enzyme molecules in which this residue is in an unsuitable position for immediate fluorescence quenching at the moment of excitation. Support for this mechanism is provided by binding studies with NADP+ and 2'P-5'ADP-ribose that can intercalate between the flavin and tyrosine and/or block the latter. Fluorescence depolarization analyses as a function of temperature and viscosity confirm the dynamic nature of the process. A comparison with fluorescence depolarization effects in a related flavoenzyme indicates that this mechanism of flavin fluorescence depolarization is more generally applicable. 相似文献
14.
axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. 总被引:14,自引:0,他引:14 下载免费PDF全文
J P O'Bryan R A Frye P C Cogswell A Neubauer B Kitch C Prokop R Espinosa rd M M Le Beau H S Earp E T Liu 《Molecular and cellular biology》1991,11(10):5016-5031
Using a sensitive transfection-tumorigenicity assay, we have isolated a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia. Sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase. Overexpression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140-kDa axl tyrosine-phosphorylated protein. Expression of axl cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antiphosphotyrosine antibodies, confirming that the axl protein is a tyrosine kinase. The juxtaposition of fibronectin type III and immunoglobulinlike repeats in the extracellular domain, as well as distinct amino acid sequences in the kinase domain, indicate that the axl protein represents a novel subclass of receptor tyrosine kinases. 相似文献
15.
The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. 总被引:5,自引:0,他引:5 下载免费PDF全文
Normal cell multiplication requires that the events of mitosis occur in a carefully ordered fashion. Cells employ checkpoints to prevent cycle progression until some prerequisite step has been completed. To explore the mechanisms of checkpoint enforcement, we previously screened for mutants of Saccharomyces cerevisiae which are unable to recover from a transient treatment with a benzimidazole-related microtubule inhibitor because they fail to inhibit subsequent cell cycle steps. Two of the identified genes, BUB2 and BUB3, have been cloned and described (M. A. Hoyt, L. Totis, and B. T. Roberts, Cell 66:507-517, 1991). Here we present the characterization of the BUB1 gene and its product. Genetic evidence was obtained suggesting that Bub1 and Bub3 are mutually dependent for function, and immunoprecipitation experiments demonstrated a physical association between the two. Sequence analysis of BUB1 revealed a domain with similarity to protein kinases. In vitro experiments confirmed that Bub1 possesses kinase activity; Bub1 was able to autophosphorylate and to catalyze phosphorylation of Bub3. In addition, overproduced Bub1 was found to localize to the cell nucleus. 相似文献
16.
Vernier-Magnin S Muller S Sallot M Radom J Musard JF Adami P Dulieu P Rémy-Martin JP Jouvenot M Fraichard A 《Biochemical and biophysical research communications》2001,284(1):118-125
We have isolated, in guinea-pig endometrial cells, an estrogen-induced 1.8 kb RNA called gec1. Screening of a guinea-pig genomic library led to identification of gec1 gene consisting of 4 exons and 3 introns. Exon 1 contains the 5'UTR and the ATG initiation codon. A guinea-pig gec1 cDNA was obtained by 5'-RACE. The 351 bp coding sequence shares 76.8% identity with that of the human GABARAP 924 bp cDNA while UTRs of the two cDNAs differ. A gec1 probe from the 3'UTR revealed a 1.9 kb mRNA in human tissues and a human GEC1 cDNA was isolated from placenta. Its coding sequence shares 93 and 79% identity with that of guinea-pig gec1 and human GABARAP, respectively. The human and guinea-pig GEC1 proteins have 100% identity. GEC1 and GABARAP proteins have 87% identity and N terminus featuring a tubulin binding motif. Thus, estrogen-regulated gec1 is a new gene which could encode a microtubule-associated protein. 相似文献
17.
Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis,rice, and Chlamydomonas reinhardtii 下载免费PDF全文
Kasahara M Swartz TE Olney MA Onodera A Mochizuki N Fukuzawa H Asamizu E Tabata S Kanegae H Takano M Christie JM Nagatani A Briggs WR 《Plant physiology》2002,129(2):762-773
Phototropins (phot1 and phot2, formerly designated nph1 and npl1) are blue-light receptors that mediate phototropism, blue light-induced chloroplast relocation, and blue light-induced stomatal opening in Arabidopsis. Phototropins contain two light, oxygen, or voltage (LOV) domains at their N termini (LOV1 and LOV2), each a binding site for the chromophore flavin mononucleotide (FMN). Their C termini contain a serine/threonine protein kinase domain. Here, we examine the kinetic properties of the LOV domains of Arabidopsis phot1 and phot2, rice (Oryza sativa) phot1 and phot2, and Chlamydomonas reinhardtii phot. When expressed in Escherichia coli, purified LOV domains from all phototropins examined bind FMN tightly and undergo a self-contained photocycle, characterized by fluorescence and absorption changes induced by blue light (T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada [2001] Proc Natl Acad Sci USA 98: 6969-6974; M. Salomon, J.M. Christie, E. Knieb, U. Lempert, W.R. Briggs [2000] Biochemistry 39: 9401-9410). The photocycle involves the light-induced formation of a cysteinyl adduct to the C(4a) carbon of the FMN chromophore, which subsequently breaks down in darkness. In each case, the relative quantum efficiencies for the photoreaction and the rate constants for dark recovery of LOV1, LOV2, and peptides containing both LOV domains are presented. Moreover, the data obtained from full-length Arabidopsis phot1 and phot2 expressed in insect cells closely resemble those obtained for the tandem LOV-domain fusion proteins expressed in E. coli. For both Arabidopsis and rice phototropins, the LOV domains of phot1 differ from those of phot2 in their reaction kinetic properties and relative quantum efficiencies. Thus, in addition to differing in amino acid sequence, the phototropins can be distinguished on the basis of the photochemical cycles of their LOV domains. The LOV domains of C. reinhardtii phot also undergo light-activated spectral changes consistent with cysteinyl adduct formation. Thus, the phototropin family extends over a wide evolutionary range from unicellular algae to higher plants. 相似文献
18.
daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase 总被引:19,自引:0,他引:19
The dauer larva is a developmentally arrested, non-feeding dispersal stage normally formed in response to overcrowding and limited food. The daf-1 gene specifies an intermediate step in a hierarchy of genes thought to specify a pathway for neural transduction of environmental cues. Mutations in daf-1 result in constitutive formation of dauer larvae even in abundant food. This gene has been cloned by Tc1-transposon tagging, and it appears to encode a new class of serine/threonine kinase. A daf-1 probe detects a 2.5 kb mRNA of low abundance, and the DNA sequence indicates that the gene encodes a 669 amino acid protein, with a putative transmembrane domain and a C-terminal protein kinase domain most closely related to the cytosolic, raf proto-oncogene family. Hence, the daf-1 product appears to be a cell-surface receptor required for transduction of environmental signals into an appropriate developmental response. 相似文献
19.
Satoshi Endo Toshiyuki Matsunaga Satoshi Ohno Ossama El-Kabbani 《Biochemical and biophysical research communications》2008,377(4):1326-1330
A protein encoded in the gene Cbr4 on human chromosome 4q32.3 belongs to the short-chain dehydrogenase/reductase family. Contrary to the functional annotation as carbonyl reductase 4 (CBR4), we show that the recombinant tetrameric protein, composed of 25-kDa subunits, exhibits NADPH-dependent reductase activity for o- and p-quinones, but not for other aldehydes and ketones. The enzyme was insensitive to dicumarol and quercetin, potent inhibitors of cytosolic quinone reductases. The 25-kDa CBR4 was detected in human liver, kidney and cell lines on Western blotting using anti-CBR4 antibodies. The overexpression of CBR4 in bovine endothelial cells reveals that the enzyme has a non-cleavable mitochondrial targeting signal. We further demonstrate that the in vitro quinone reduction by CBR4 generates superoxide through the redox cycling, and suggest that the enzyme may be involved in the induction of apoptosis by cytotoxic 9,10-phenanthrenequinone. 相似文献
20.
The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily 总被引:1,自引:0,他引:1
Specific recognition of Pseudomonas syringae strains that express the avirulence gene avrPphB requires two genes in Arabidopsis, RPS5 and PBS1. Previous work has shown that RPS5 encodes a member of the nucleotide binding site-leucine rich repeat class of plant disease resistance genes. Here we report that PBS1 encodes a putative serine-threonine kinase. Southern blot analysis revealed that the pbs1-1 allele contained a deletion of the 3' end of the PBS1 open reading frame. DNA sequence analysis of the pbs1-2 allele showed it to be a missense mutation that caused a glycine to arginine substitution in the activation segment of PBS1, a region known to regulate substrate binding and catalytic activity in many protein kinases. The identity of PBS1 was confirmed using both transient transformation and stable transformation of mutant pbs1 plants. Comparison of the predicted PBS1 amino acid sequence with other plant protein kinases revealed that PBS1 belongs to a distinct subfamily of protein kinases that contains no other members of known function. The Pto kinase of tomato, which is required for specific resistance to P. syringae strains expressing avrPto, did not fall in the same subfamily as PBS1 and is only 42% identical in the kinase domain. These data suggest that PBS1 and Pto may fulfil different functions in the recognition of pathogen avirulence proteins. We discuss several possible models for the roles of PBS1 and RPS5 in AvrPphB recognition. 相似文献