首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells.  相似文献   

3.
蛋白激酶C亚型在HL—60细胞诱导分化中的变化   总被引:1,自引:0,他引:1  
用全反式维甲酸(ATRA)或佛波酯(PMA)处理人早幼粒白血病细胞(HL-60)3天,用形态学,NBT还原实验,特异性和非特异性酯酶测定,证明细胞分别向粒细胞或单核/巨噬细胞分化。通过免疫组化法观察了蛋白激酶C(PKC)α,βⅠ和βⅡ亚型在分化后的变化。结果显示,ATRA可引起HL-60细胞PKCα,βⅠ和βⅡ的含量升高,分别为对照的5.0,2.8和4.2倍,并存在从胞膜向胞质转位。PMA则使PC  相似文献   

4.
The subcellular redistribution of protein kinase C family members (alpha, beta, gamma, delta, epsilon and zeta isoforms) was examined in response to treatment with 12-O-tetradecanoyl-phorbol-13 acetate (TPA) or nerve growth factor (NGF) in a synaptosomal-enriched P2 fraction from rat brain. Treatment with TPA affected members of the classical-PKC family (alpha, beta and gamma), resulting in a final loss of total protein of each isoenzyme. The kinetics of changes of members of the novel-PKC family are different, the delta isoform being translocated, but not down-regulated, while the epsilon isoform showing only a slight diminishing of immunoreactivity in the soluble and particulate fractions. The atypical-PKC zeta isoform was not translocated in response to TPA. Incubation with NGF induced a loss of immunoreactivity of the cytosolic alpha, beta and epsilon isoforms, but the membrane fractions of these isoforms were not appreciably affected. In contrast, a marked translocation from cytosol to membrane was observed in the case of the gamma and delta isoforms. The zeta isoform presented a slight translocation from the particulate fraction to the soluble fraction. Thus, the results show that the effects of TPA and NGF on PKC isoforms are not coincident in synaptosomes, the 6 isoform being activated and not down-regulated by both treatments, whereas the gamma isoform is only down-regulated in the case of TPA, but presents sustained translocation with NGF, indicating that PKC isoform-specific degradation pathways exist in synaptic terminals. The effects of NGF on PKC isoforms coexist with an increase in NGF-induced polyphosphoinositide hydrolysis, suggesting the participation of phospholipases.  相似文献   

5.
In this study, we evaluated the influence of protein kinase C zeta (PKC zeta) on topoisomerase II inhibitor-induced cytotoxicity in monocytic U937 cells. In U937-zeta J and U937-zeta B cells, enforced PKC zeta expression, conferred by stable transfection of PKC zeta cDNA, resulted in total inhibition of VP-16- and mitoxantrone-induced apoptosis and decreased drug-induced cytotoxicity, compared with U937-neo control cells. In PKC zeta-overexpressing cells, drug resistance correlated with decreased VP-16-induced DNA strand breaks and DNA protein cross-links measured by alkaline elution. Kinetoplast decatenation assay revealed that PKC zeta overexpression resulted in reduced global topoisomerase II activity. Moreover, in PKC zeta-overexpressing cells, we found that PKC zeta interacted with both alpha and beta isoforms of topoisomerase II, and these two enzymes were constitutively phosphorylated. However, when human recombinant PKC zeta (rH-PKC zeta) was incubated with purified topoisomerase II isoforms, rH-PKC zeta interacted with topoisomerase II beta but not with topoisomerase II alpha. PKC zeta/topoisomerase II beta interaction resulted in phosphorylation of this enzyme and in decrease of its catalytic activity. Finally, this report shows for the first time that topoisomerase II beta is a substrate for PKC zeta, and that PKC zeta may significantly influence topoisomerase II inhibitor-induced cytotoxicity by altering topoisomerase II beta activity through its kinase function.  相似文献   

6.
Human promyelocytic leukemia cells (HL-60) were treated with several differentiation inducers, then the changes in the activity of cytosolic protein kinase C (PKC) isoforms were examined by hydroxylapatite chromatography and the species of the isoforms were determined immunologically. In three undifferentiated HL-60 cell lines examined, PKC alpha and beta isoforms were present, but PKC gamma isoform was not detected. When the cells were induced by dimethylsulfoxide, dibutyryl cAMP, or nicotinamide to differentiate into granulocytes, these two PKC isoforms each increased to about 2- to 3-fold. When retinoic acid was used as the inducer, in addition to PKC alpha and beta, a third PKC isoform appeared. This isoform was clearly distinct from rat PKC alpha, beta, and gamma, immunologically. This isoform showed a distinctly lower Ca(2+)-requirement (3 microM) than that of PKC alpha or beta (100 microM) and was more dependent on cardiolipin and phosphatidylethanolamine, compared with PKC alpha, beta, and gamma. These results suggest that while the increases in the activities of PKC alpha and beta isoforms are common in the differentiation program initiated by several inducers, including retinoic acid, the emergence of an unclassified PKC isoform is a retinoic acid-specific process.  相似文献   

7.
There is evidence involving protein kinase C (PKC) in the signal transduction pathways that regulate the differentiation of myoblasts into mature multinucleated muscle cells (myotubes). In order to obtain information on the possible role of individual PKC isozymes in myogenesis, in the present work we investigated the differential expression of PKC isoforms alpha, beta, delta, epsilon, and zeta during muscle cell development in vitro. Chick embryo myoblasts cultured from 1 to 6 days were used as experimental model. Morphological characterization and measurement of specific biochemical parameters in cultures, e.g., DNA synthesis, creatine kinase activity, and myosin levels, revealed a typical muscle cell developmental pattern consisting of an initial proliferation of myoblasts followed by their differentiation into myotubes. PKC activity was high at the proliferation stage, decreased as myoblasts elongated and fused, and increased again in differentiated myotubes. In proliferating myoblasts, the PKC inhibitors calphostin C and bisindolylmaleimide I decreased DNA synthesis whereas in myoblasts undergoing differentiation they exerted the opposite effect, suggesting that PKC plays a role at both stages of myogenesis. Western blot analysis of changes in the expression of PKC isoforms during muscle cell development showed high levels of PKC alpha in the proliferating phase which markedly decreased as myoblasts differentiated. Treatment with TPA of proliferative myoblasts inhibited DNA synthesis and selectively down-regulated PKC alpha, suggesting that this isozyme may have an important role in maintaining myoblast proliferation. On the other hand, an increase in the expression of PKC beta, delta, and epsilon was detected during myogenesis, suggesting that one or more of these isoforms may participate in the differentiation process of myoblasts.  相似文献   

8.
Rat embryo fibroblasts and liver epithelial cell lines normally express two isoforms of protein kinase C (PKC), PKC alpha and PKC epsilon. Derivatives of these cells transformed by an activated human c-H-ras oncogene display a several-fold increase in expression of PKC alpha and a concomitant decrease in PKC epsilon, at both the protein and mRNA levels. Similar changes are seen when the transformed phenotype is induced by Zn2+ in cells carrying the activated ras oncogene under the control of a metallothionein promoter. Studies using cell lines that express very high levels of PKC beta 1, studies using a specific inhibitor of PKC (CGP 41251), and studies in which PKC activity is down-regulated by treatment with a phorbol ester tumor promoter provide evidence that the effects of the ras oncogene on the expression of PKC alpha and PKC epsilon are mediated mainly through a PKC-independent pathway. The present results provide the first evidence that transformation of cells by an oncogene can alter the relative expression of specific isoforms of PKC. It is possible that these changes contribute to the malignant phenotype of these cells.  相似文献   

9.
Murine nuclear factor of activated T cells (NFAT)2.alpha/beta differ by 42 and 28 unique amino-terminal amino acids and are differentially expressed. Both isoforms share conserved domains that regulate DNA-binding and subcellular localization. A genetic "one-hybrid" assay was used to define two distinct transactivation (TA) domains: in addition to a conserved TAD present in both isoforms, a second, novel TAD exists within the beta-specific amino terminus. Pharmacologic inhibitors G?6976 and rottlerin demonstrate that both conventional and novel protein kinase C (PKC) family members regulate endogenous mast cell NFAT activity, and NFAT2 TA. Overexpression of dominant active PKC (which has been implicated in immune receptor signaling) induces NFAT2.alpha/beta TA. Mutations within the smallest PKC-responsive transactivation domain demonstrate that the PKC effect is at least partially indirect. Significantly, the beta-specific domain confers greater ability to TA in response to treatment with phorbol 12-myristate 13-acetate/ionomycin or lipopolysaccharide, and unique sensitivity to FcepsilonRI signaling. Accordingly, overexpression of NFAT2.beta results in significantly greater NFAT- and interleukin-4 reporter activity than NFAT2.alpha. These results suggest that whereas NFAT2 isoforms may share redundant DNA-binding preferences, there are specialized functional consequences of their isoform-specific domains.  相似文献   

10.
In this study we examined the regulation of the stress-activated protein (SAP) kinases and inhibitory kappa B kinases (IKKs) through stimulation of the novel G-protein-coupled receptor proteinase-activated receptor-2 in the human keratinocyte cell line NCTC2544. Trypsin and the peptide SLIGKV stimulated a time-dependent increase in both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activity. Trypsin also stimulated NF kappa B-DNA binding and the activation of the upstream kinases IKK alpha and -beta. Phorbol 12-myristate 13-acetate also strongly activated both SAP kinases and IKK isoforms, suggesting the potential for a protein kinase C-mediated regulatory mechanism underlying the effects of trypsin. Pre-incubation with selective protein kinase C (PKC) inhibitors GF109203X and G?6983, or transfection of dominant negative (DN)-PKC alpha, abolished phorbol 12-myristate 13-acetate-mediated c-Jun N-terminal kinase activity, although it only partially inhibited the response to trypsin. In contrast, G?6983 reduced trypsin-stimulated p38 mitogen-activated protein kinase activity to a greater extent than GF109203X, although DN-PKC alpha or PKC zeta had no substantial effect. Additionally, inhibitors of PKC partially reduced trypsin-stimulated IKK alpha activity but abolished that of IKK beta, whereas DN-PKC alpha but not DN-PKC zeta substantially reduced trypsin-stimulated Flag-IKK beta activity. This study shows for the first time proteinase-activated receptor-2-mediated stimulation of both SAP kinase and IKK signaling and differing roles for PKC isoforms in the regulation of each pathway.  相似文献   

11.
12.
To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.  相似文献   

13.
The function of beta-adrenergic receptor (betaAR) is modulated by the activity status of alpha1-adrenergic receptors (alpha1ARs) via molecular crosstalk, and this becomes evident when measuring cardiac contractile responses to adrenergic stimulation. The molecular mechanism underlying this crosstalk is unknown. We have previously demonstrated that overexpression of alpha1B-adrenergic receptor (alpha1BAR) in transgenic mice leads to a marked desensitization of betaAR-mediated adenylyl cyclase stimulation which is correlated with increased levels of activated protein kinase C (PKC) beta, delta and [J. Mol. Cell. Cardiol. 30 (1998) 1827]. Therefore, we wished to determine which PKC isoforms play a role in heterologous betaAR desensitization and also which isoforms of the betaAR were the molecular target(s) for PKC. In experiments using constitutively activated PKC expression constructs transfected into HEK 293 cells also expressing the beta2AR, constitutively active (CA)-PKC overexpression was first confirmed by immunoblots using specific anti-PKC antibodies. We then demonstrated that the different PKC subtypes lead to a decreased maximal cAMP accumulation following isoproterenol stimulation with a rank order of PKCalpha > or = PKCzeta>PKC>PKCbetaII. However, a much more dramatic desensitization of adenylyl cyclase stimulation was observed in cells co-transfected with different PKC isoforms and beta1AR. Further, the modulation of beta1AR by PKC isoforms had a different rank order than for the beta2AR: PKCbetaII>PKCalpha>PKC>PKCzeta. PKC-mediated desensitization was reduced by mutating consensus cAMP-dependent protein kinase (PKA)/PKC sites in the third intracellular loop and/or the carboxy-terminal tail of either receptor. Our results demonstrate therefore that the beta1AR is the most likely molecular target for PKC-mediated heterologous desensitization in the mammalian heart and that modulation of adrenergic receptor activity in any given cell type will depend on the complement of PKC isoforms present.  相似文献   

14.
15.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

16.
17.
We previously reported that retinoic acid (RA) augmented mouse (BALB/c) lymphokine (interleukin-2)-activated killer (LAK) cell activity in a dose and time dependent manner. As evidence available has suggested the role of protein kinase C (PKC) in the regulation of cell mediated cytotoxicity, the present work was to investigate whether or not PKC may mediate the enhancement of LAK cell activity by RA. Accompanied with an augmented LAK cell activity, RA increased total PKC enzyme activity, [3H]phorbol 12,13-dibutyrate binding activity, and the amount of immunoreactive PKC. A prolonged treatment (18 h) of LAK cells with 12-O-tetradecanoylphorbol-13-acetate resulted in the loss of both PKC and LAK cell activity. PKC inhibitors, 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride and staurosporine, also drastically reduced LAK cell activity. Although most of the total PKC activity (97%) was detected in the cytosol fraction, the increase in PKC activity was attributed to an increased enzyme activity in both cytosol and membrane fractions, and shown to be RA dose-dependent. Kinetics study revealed that the increase in PKC was a time-dependent process and the enhancement was detectable as early as 8 h after the addition of RA to LAK cell culture. By immunoblotting, the cytosol PKC of LAK cells was shown to contain alpha and beta isoforms, but not gamma. RA further increased the expression of PKC alpha. The enhanced expression of alpha isozyme of PKC by RA was also in a dose and time dependent manner. Taken together, these results indicate that the mechanism of the augmentation of LAK cell activity by RA may in part result from the increase in PKC, especially PKC alpha isozyme.  相似文献   

18.
The addition of transforming growth factor alpha (TGFalpha) to a human submandibular gland cell line (HSG) cultured on basement membrane extract Matrigel, synergistically activates the acinar cell-specific salivary amylase promoter. Signaling through beta1 integrins and increased phosphorylation of ERK1/2 are involved in the increased promoter activity. Phorbol-12-myristate-13-acetate (PMA) and thapsigargin increase amylase promoter activity, suggesting that phorbol ester and calcium-dependent protein kinase C (PKC) pathways are also involved. The combination of specific inhibitors of PKC and MEK1 inhibits the amylase promoter. Inhibitors of the calcium-dependent PKC isoforms alpha, beta, and gamma decrease the promoter activity; however, PKCbeta is not detectable in HSG cells. TGFalpha alters the cellular localization of PKCalpha but not -gamma, suggesting PKCalpha is involved in TGFalpha upregulation of the amylase promoter. Furthermore, rottlerin, a PKCdelta-specific inhibitor, increases the promoter activity, suggesting PKC isoforms differentially regulate the amylase promoter. In conclusion, beta1-integrin and TGFalpha signaling pathways regulate the amylase promoter activity in HSG cells. In response to Matrigel and TGFalpha, the activation of both PKCalpha and phosphorylation of ERK1/2 results in synergistic activation of the amylase promoter. Published 2000 Wiley-Liss, Inc.  相似文献   

19.
20.
Total PKC activity in BAEC incubated for 24 hrs in either 10% serum (FBS) or serum-deprived media (SDM) was similar. However, most of the activity (69%) in the FBS group was detected in the particulate fraction, while it was mainly in the cytosolic fraction (66%) in the SDM group. By confocal microscopy, there was diffuse cytoplasmic localization of the antibodies to the alpha and beta PKC isoforms. gamma PKC was not detected. Treatment of FBS or SDM cells with a phorbol ester resulted in an increase in PKC activity with translocation to the particulate fraction. PKC alpha immunofluorescence redistributed to the perinuclear region whereas PKC beta staining remained mostly cytosolic. Calphostin C, a PKC inhibitor, prevented the phorbol ester-induced increase in PKC activity and translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号