首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayesian hierarchical error model for analysis of gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Analysis of genome-wide microarray data requires the estimation of a large number of genetic parameters for individual genes and their interaction expression patterns under multiple biological conditions. The sources of microarray error variability comprises various biological and experimental factors, such as biological and individual replication, sample preparation, hybridization and image processing. Moreover, the same gene often shows quite heterogeneous error variability under different biological and experimental conditions, which must be estimated separately for evaluating the statistical significance of differential expression patterns. Widely used linear modeling approaches are limited because they do not allow simultaneous modeling and inference on the large number of these genetic parameters and heterogeneous error components on different genes, different biological and experimental conditions, and varying intensity ranges in microarray data. RESULTS: We propose a Bayesian hierarchical error model (HEM) to overcome the above restrictions. HEM accounts for heterogeneous error variability in an oligonucleotide microarray experiment. The error variability is decomposed into two components (experimental and biological errors) when both biological and experimental replicates are available. Our HEM inference is based on Markov chain Monte Carlo to estimate a large number of parameters from a single-likelihood function for all genes. An F-like summary statistic is proposed to identify differentially expressed genes under multiple conditions based on the HEM estimation. The performance of HEM and its F-like statistic was examined with simulated data and two published microarray datasets-primate brain data and mouse B-cell development data. HEM was also compared with ANOVA using simulated data. AVAILABILITY: The software for the HEM is available from the authors upon request.  相似文献   

2.
3.
A model for measurement error for gene expression arrays.   总被引:20,自引:0,他引:20  
We introduce a model for measurement error in gene expression arrays as a function of the expression level. This model, together with analysis methods, data transformations, and weighting, allows much more precise comparisons of gene expression, and provides guidance for analysis of background, determination of confidence intervals, and preprocessing data for multivariate analysis.  相似文献   

4.
MOTIVATION: Identification of genes expressed in a cell-cycle-specific periodical manner is of great interest to understand cyclic systems which play a critical role in many biological processes. However, identification of cell-cycle regulated genes by raw microarray gene expression data directly is complicated by the factor of synchronization loss, thus remains a challenging problem. Decomposing the expression measurements and extracting synchronized expression will allow to better represent the single-cell behavior and improve the accuracy in identifying periodically expressed genes. RESULTS: In this paper, we propose a resynchronization-based algorithm for identifying cell-cycle-related genes. We introduce a synchronization loss model by modeling the gene expression measurements as a superposition of different cell populations growing at different rates. The underlying expression profile is then reconstructed through resynchronization and is further fitted to the measurements in order to identify periodically expressed genes. Results from both simulations and real microarray data show that the proposed scheme is promising for identifying cyclic genes and revealing underlying gene expression profiles. AVAILABILITY: Contact the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at: http://dsplab.eng.umd.edu/~genomics/syn/  相似文献   

5.
6.
7.
8.
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples.  相似文献   

9.
10.
A framework for gene expression analysis   总被引:1,自引:0,他引:1  
  相似文献   

11.
卢汀 《生物信息学》2014,12(2):140-144
基因的差异化表达由多种因素共同导致,并且与许多疾病的发生和发展有密切联系,对差异化表达的基因进行生物信息学以及生物统计学的分析对于研究细胞调节机制和疾病机理有着重要意义。目前,对差异化表达的基因有以下几种主流的研究方法:DNA微阵列(DNA microarray),抑制性消减杂交(SSH),基因表达连续性分析(SAGE),代表性差异分析(RDA),以及mRNA差异显示PCR(mRNA DDRT-PCR)。目前许多基因差异化表达数据是建立在时段(time series)基础上,因此对基于时间变化的基因差异化表达分析变得尤为重要。本文将对差异化表达基因的几种主流方法进行详细阐述,并介绍一种基于傅里叶函数的时段基因差异化表达分析。  相似文献   

12.
High-density microarrays for gene expression analysis   总被引:6,自引:0,他引:6  
  相似文献   

13.

Background

Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution) or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale).

Results

Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood). Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic) variance structure of the data.As the quasi-likelihood behaves (almost) like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye) effects.

Conclusions

The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also improved the power of tests to identify differential expression.
  相似文献   

14.
Microarray techniques using cDNA array and comparative genomic hybridization (CGH) have been developed for several discovery applications. They are frequently applied for the prediction and diagnosis of cancer in recent years. Many studies have shown that integrating genomic data from different sources may increase the reliability of gene expression analysis results in understanding cancer progression. Therefore, developing a good prognostic model dealing simultaneously with different types of dataset is important. The challenge with these types of data is high background noise. We describe an analytical two-stage framework with a multi-parallel data analysis method named wavelet-based generalized singular value decomposition and shaving method (WGSVD-shaving). This method is proposed for de-noising and dimension-reduction during early stage prognosis modeling. We also applied a supervised gene clustering technique with penalized logistic regression with Cox-model on an integrated data. We show the accuracy of the method using a simulated dataset with a case study on Hepatocelluar Carcinoma (HCC) cDNA and CGH data. The method shows improved results from GSVD-shaving and has application in the discovery of candidate genes associated with cancer.  相似文献   

15.
Xie  Rui  Wen  Jia  Quitadamo  Andrew  Cheng  Jianlin  Shi  Xinghua 《BMC genomics》2017,18(9):845-49

Background

Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance.

Results

To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns.

Conclusion

We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes’ contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
  相似文献   

16.
We propose a model-based approach to unify clustering and network modeling using time-course gene expression data. Specifically, our approach uses a mixture model to cluster genes. Genes within the same cluster share a similar expression profile. The network is built over cluster-specific expression profiles using state-space models. We discuss the application of our model to simulated data as well as to time-course gene expression data arising from animal models on prostate cancer progression. The latter application shows that with a combined statistical/bioinformatics analyses, we are able to extract gene-to-gene relationships supported by the literature as well as new plausible relationships.  相似文献   

17.
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments.  相似文献   

18.
19.
The past year has demonstrated the versatility of microarrays for the analysis of whole model-organism genomes and has seen the development of chips to measure the expression of 40,000 human genes. Microarray technology has also become considerably more robust and sensitive. Technology enhancements include the use of noncontact printing methods, improved 2-color sample preparation, and statistically based software for data analysis.  相似文献   

20.
Outlier sums for differential gene expression analysis   总被引:1,自引:0,他引:1  
We propose a method for detecting genes that, in a disease group, exhibit unusually high gene expression in some but not all samples. This can be particularly useful in cancer studies, where mutations that can amplify or turn off gene expression often occur in only a minority of samples. In real and simulated examples, the new method often exhibits lower false discovery rates than simple t-statistic thresholding. We also compare our approach to the recent cancer profile outlier analysis proposal of Tomlins and others (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号