首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
山仑 《西北植物学报》1996,16(3):203-207
以高梁杂交种晋杂86-1为材料研究了种子吸水萌动过程中胚与胚乳两部分的水分状况及可溶性糖变化的过程。结果表明:在吸水萌动过程中种胚和胚乳在水分及糖代谢方面具有不同的特点。  相似文献   

2.
Germinated seeds of Trigonella foenum-graecum L. (fenugreek) were grown in water or in polyethylene glycol (PEG) solutions. After endosperm removal, the water relations, growth, dry weight, sucrose and reducing sugar content of the embryo were determined. Under water sstress conditions, water content and osmotic potential (π0) at saturation, growth and dry weight were lower than in non-stressed controls. The reduction in dry weight indicated a lower uptake of solutes from the endosperm and the decrease in π0 was not accompanied by an increase in the amount of the accumulated solutes. It is suggested that embryos of stressed fenugreek seeds control osmotic potential by reduction of water uptake and that this results in reduction of growth. Embryos isolated from germinated seeds ("naked" embryos) were grown in water or in PEG solutions, with or without galactose (as an external solute source substituting for the endosperm). The results indicate that a decrease in the external solute did not account for growth reduction under conditions of water stress, and that decreased solute transport to the embryo may be important. The sucrose contents of "naked" embryos and of embryos from whole seeds were higher after PEG treatment, while reducing sugar contents were lower compared to non-stressed controls. The increased sucrose accumulation may be due to decreased sucrose hydrolysis.  相似文献   

3.
The water content of germinating seeds fluctuates in response to water potential changes in the surrounding environment. We tested the hypothesis that the endosperm functions as a water reservoir when imbibed seeds experience drying, and we characterized water uptake and movement within barley (Hordeum vulgare cv. Triumph) caryopses (hereafter referred to as seeds). Water movement into and through germinating barley seeds during imbibition and drying was determined gravimetrically and with the fluorescent dye trisodium 8-hydroxy-1,3,6-pyrenetrisulfonate (PTS). During imbibition, embryo tissues hydrated more rapidly and reached a higher water content (g H20/g dry weight) than did the endosperm, although the endosperm eventually contained nine times as much total water. When barley seeds that had imbibed for 12 h were exposed to moderate (-4 MPa) drying, PTS solution moved from the endosperm into the shoot meristem, radicle, and scutellum, but not vice versa. Radicle emergence and elongation proceeded for up to 8 h. With harsh (-150 MPa) drying, PTS concentrated almost exclusively in the radicle. These data illustrate that the endosperm is at least a temporary water storage compartment external to the embryo itself. We speculate that water supplied by the endosperm may be important in reducing the harmful effects of drying during the critical transition period when a germinating seed changes from a desiccation-tolerant to a desiccation-intolerant organism.  相似文献   

4.
The influence of seed coat modification and light quality onwater uptake and distribution in caryopses of dormant and non-dormantlines of wild oat (Avena fatua L.) was determined using NMRmicroimaging. Non-dormant seeds absorbed water more rapidlythan dormant seeds during imbibition on distilled water. Thiseffect was detected first in the embryo-scutellar region (8h) and later in the proximal endosperm (12 h). Cutting the testaand pericarp close to the embryo or scarification with KOH promotedrapid embryo/scutellum hydration and germination. Cutting atthe middle part of the caryopsis did not enhance embryo hydrationnor did it greatly improve germination. The sensitivity of waterdistribution to the phytochrome germination effect was examined.Significant differences in imbibitional water uptake by embryos-scutellumtissue were detected by 18 h following red-light (germinationpromoter) compared with far-red (germination inhibitor) treatment.The results indicated that both the rate and the sequence ofembryo/scutellum hydration were important in initiating germinationin dormant seeds. A refinement of the model that describes waterimbibition in wild oat seeds during the early stages of germinationis discussed. Key words: Water uptake, water distribution, Avena fatua, seed coat modification, light quality, dormant and non-dormant seeds  相似文献   

5.
BACKGROUND AND AIMS: Solanaceae seed morphology and physiology have been widely studied but mainly in domesticated crops. The present study aimed to compare the seed morphology and the physiology of germination of Solanum lycocarpum, an important species native to the Brazilian Cerrado, with two species with endospermic seeds, tomato and coffee. METHODS: Morphological parameters of fruits and seeds were determined by microscopy. Germination was monitored for 40 d under different temperature regimes. Endosperm digestion and resistance, with endo-beta-mannanase activity and required force to puncture the endosperm cap as respective markers, were measured during germination in water and in abscisic acid. KEY RESULTS: Fruits of S. lycocarpum contain dormant seeds before natural dispersion. The best germination condition found was a 12-h alternating light/dark and high/low (20/30 degrees C) temperature cycle, which seemed to target properties of the endosperm cap. The endosperm cap contains 7-8 layers of elongated polygonal cells and is predestined to facilitate radicle protrusion. The force required to puncture the endosperm cap decreased in two stages during germination and showed a significant negative correlation with endo-beta-mannanase activity. As a result of the thick endosperm cap, the puncture force was significantly higher in S. lycocarpum than in tomato and coffee. Endo-beta-mannanase activity was detected in the endosperm cap prior to radicle protrusion. Abscisic acid inhibited germination, increase of embryo weight during imbibition, the second stage of weakening of the endosperm cap and of endo-beta-mannanase activity in the endosperm cap. CONCLUSIONS: The germination mechanism of S. lycocarpum bears resemblance to that of tomato and coffee seeds. However, quantitative differences were observed in embryo pressure potential, endo-beta-mannanase activity and endosperm cap resistance that were related to germination rates across the three species.  相似文献   

6.
Water, osmotic, and pressure potentials of soybean (Glycine max [L.] Merrill) embryos and related maternal tissues were measured during periods of seed growth and maturation to test the involvement of embryo water relations in seed maturation. Seeds were matured in situ or in an in vitro liquid culture medium in detached pods or as isolated seeds. Changes in water relations of embryo tissues were independent of maternal tissues. During seed maturation in situ, water and osmotic potentials in both embryo and maternal tissues declined sharply near the time of maximum dry weight. During in vitro seed culture with and without pods, water and osmotic potentials in axis and cotyledon tissues declined continuously during growth. Water and osmotic potentials of the seed coat, which was present only during in vitro seed culture with pods, changed little during the culture period. Positive turgor in the embryo was maintained beyond maximum dry weight and the loss of green color during in vitro culture but declined to zero at maturity in situ. The osmotic potential in embryo tissues declined from −1.1 megapascals at early pod fill to between −1.65 and −2.2 megapascals at maximum seed dry weight across all maturation environments. It is suggested that the decreasing osmotic potential in the growing soybean embryo reaches a threshold level that is associated with cessation of growth and onset of seed maturation.  相似文献   

7.
beta-Mannosidase and endo-beta-mannanase are involved in the mobilization of the mannan-containing cell walls of the tomato seed endosperm. The activities of both enzymes increase in a similar temporal manner in the micropylar and lateral endosperm during and following germination. This increase in enzyme activities in the micropylar endosperm is not markedly reduced in seeds imbibed in abscisic acid although, in the lateral endosperm, endo-beta-mannanase activity is more suppressed by this inhibitor than is the activity of beta-mannosidase. Gibberellin-deficient (gib-1) mutants of tomato do not germinate unless imbibed in gibberellin; low beta-mannosidase activity, and no endo-beta-mannanase activity is present in seeds imbibed in water, but both enzymes increase strongly in activity in the seeds imbibed in the growth regulator. For production of full activity of both beta-mannosidase and endo-beta-mannanase in the endosperm, this tissue must be in contact with the embryo for at least the first 6 h of imbibition, which is indicative of a stimulus diffusing from the embryo to the endosperm during this time. These results suggest some correlation between the activities of beta-mannosidase and endo-beta-mannanase, particularly in the micropylar endosperm, in populations of tomato seeds imbibed in water, abscisic acid and gibberellin. However, when individual micropylar endosperm parts are used to examine the effect of the growth regulators and of imbibition in water on the production of the two enzymes, it is apparent that within these individual seed parts there may be large differences in the amount of enzyme activity present. Micropylar endosperms with high endo-beta-mannanase activity do not necessarily have high beta-mannosidase activity, and vice versa, which is indicative of a lack of co-ordination of the activities of these two enzymes within individuals of a population.  相似文献   

8.
We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue.  相似文献   

9.
The regulation of water uptake of germinating tobacco (Nicotiana tabacum) seeds was studied spatially and temporally by in vivo (1)H-nuclear magnetic resonance (NMR) microimaging and (1)H-magic angle spinning NMR spectroscopy. These nondestructive state-of-the-art methods showed that water distribution in the water uptake phases II and III is inhomogeneous. The micropylar seed end is the major entry point of water. The micropylar endosperm and the radicle show the highest hydration. Germination of tobacco follows a distinct pattern of events: rupture of the testa is followed by rupture of the endosperm. Abscisic acid (ABA) specifically inhibits endosperm rupture and phase III water uptake, but does not alter the spatial and temporal pattern of phase I and II water uptake. Testa rupture was associated with an increase in water uptake due to initial embryo elongation, which was not inhibited by ABA. Overexpression of beta-1,3-glucanase in the seed-covering layers of transgenic tobacco seeds did not alter the moisture sorption isotherms or the spatial pattern of water uptake during imbibition, but partially reverted the ABA inhibition of phase III water uptake and of endosperm rupture. In vivo (13)C-magic angle spinning NMR spectroscopy showed that seed oil mobilization is not inhibited by ABA. ABA therefore does not inhibit germination by preventing oil mobilization or by decreasing the water-holding capacity of the micropylar endosperm and the radicle. Our results support the proposal that different seed tissues and organs hydrate at different extents and that the micropylar endosperm region of tobacco acts as a water reservoir for the embryo.  相似文献   

10.
Semipermeable cell walls or apoplastic “membranes” have been hypothesized to be present in various plant tissues. Although often associated with suberized or lignified walls, the wall component that confers osmotic semipermeability is not known. In muskmelon (Cucumis melo L.) seeds, a thin, membranous endosperm completely encloses the embryo, creating a semipermeable apoplastic envelope. When dead muskmelon seeds are allowed to imbibe, solutes leaking from the embryo are retained within the envelope, resulting in osmotic water uptake and swelling called osmotic distention (OD). The endosperm envelope of muskmelon seeds stained with aniline blue, which is specific for callose (β-1,3-glucan). Outside of the aniline-blue-stained layer was a Sudan III- and IV-staining (lipid-containing) layer. In young developing seeds 25 d after anthesis (DAA) that did not exhibit OD, the lipid layer was already present but callose had not been deposited. At 35 DAA, callose was detected as distinct vesicles or globules in the endosperm envelope. A thick callose layer was evident at 40 DAA, coinciding with development of the capacity for OD. Removal of the outer lipid layer by brief chloroform treatment resulted in more rapid water uptake by both viable and nonviable (boiled) seeds, but did not affect semipermeability of the endosperm envelope. The aniline-blue-staining layer was digested by β-1,3-glucanase, and these envelopes lost OD. Thus, apoplastic semipermeability of the muskmelon endosperm envelope is dependent on the deposition of a thick callose-containing layer outside of the endosperm cell walls.  相似文献   

11.
The role of abscisic acid (ABA) in the dormancy induction of tomato (Lycopersicon esculentum) seeds was studied by comparison of the germination behavior of the ABA-deficient sitiens mutant with that of the isogenic wild-type genotype. Freshly harvested mutant seeds, in contrast to wild-type seeds, always readily germinate and even exhibit viviparous germination in overripe fruits. Crosses between mutant and wild-type and self-pollination of heterozygous plants show that in particular the ABA fraction of embryo and endosperm is decisive for the induction of dormancy. After-ripened wild-type seeds fully germinate in water but are more sensitive toward osmotic inhibition than mutant seeds. Germination of both wild-type and mutant seeds is equally sensitive toward inhibition by exogenous ABA. ABA content of mature wild-type seeds is about 10-fold the level found in mutant seeds. Nevertheless, it is argued that the differences in dormancy between the seeds of both genotypes are not a result of actual ABA levels in the mature seeds or fruits but a result of differences in ABA levels during seed development. It is hypothesized that the high levels of ABA that occur during seed development in wild-type seeds induce an inhibition of cell elongation of the radicle that can still be observed after long periods of dry storage.  相似文献   

12.
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.  相似文献   

13.
Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.  相似文献   

14.
The endosperm tissue enclosing the radicle tip (endosperm cap) governs radicle emergence in tomato (Lycopersicon esculentum Mill.) seeds. Weakening of the endosperm cap has been attributed to hydrolysis of its mannan-rich cell walls by endo-[beta]-D-mannanase. To test this hypothesis, we measured mannanase activity in tomato endosperm caps from seeds allowed to imbibe under conditions of varying germination rates. Over a range of suboptimal temperatures, mannanase activity prior to radicle emergence increased in accordance with accumulated thermal time. Reduced water potential delayed or prevented radicle emergence but enhanced mannanase activity in the endosperm caps. Abscisic acid did not prevent the initial increase in mannanase activity, although radicle emergence was markedly delayed. Sugar composition and percent mannose (Man) content of endosperm cap cell walls did not change prior to radicle emergence under any condition. Man, glucose, and other sugars were released into the incubation solution by endosperm caps isolated from intact seeds during imbibition. Pregerminative release of Man was suppressed and the release of glucose was enhanced when seeds were incubated in osmoticum or abscisic acid; the opposite occurred in the presence of gibberellin. Thus, whereas sugar release patterns were sensitive to environmental and hormonal factors affecting germination, neither assayable endo-[beta]-D-mannanase activity nor changes in cell wall sugar composition of endosperm caps correlated well with tomato seed germination rates under all conditions.  相似文献   

15.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

16.
The biophysical mechanism underlying photoinhibition of radish (Raphanus sativus L.) seed germination was investigated using three cultivars differing in sensitivity to continuous irradiation with far-red light (high-irradiance reaction of phytochrome). Sensitivity of germination to the inhibitory action of light was assessed by probing germination under osmotic stress (incubation in media of low water potentials adjusted with polyethylene glycol 6000) and expressed in terms of ‘germination potential’ (positive value of the water potential at which germination is inhibited by 50%). Far-red light decreases the germination potential to various degrees in the different cultivars, reflecting the light-sensitivity of germination in water. Removal of the seed coat increases the germination potential by a constant amount in darkness and light. It is concluded that germination depends on the expansive force of the embryo which can be drastically diminished by far-red light. Seed-coat constraint and expansive force of the embryo interact additively on the level of the germination potential. Photoinhibition of germination was accompanied by an inhibition of water uptake into the seed. Analysis of seed water relations showed that osmotic pressure and turgor assumed higher levels in photoinhibited seeds, compared to seeds germinating in darkness, while the water potential was close to zero under both conditions. Far-red light produced a shift (to less negative values) in the curve relating water-uptake rate to external water potential, i.e. a reduction in the driving force for water uptake. It is concluded that photoinhibition of germination results from the maintenance of a high threshold of cell-wall extensibility in the embryo.  相似文献   

17.
利用热偶湿度计(thermocouplepsychrometer)研究了野生型、GA-缺陷型和ABA-缺陷型番茄发育过程中果实种子的水分关系,发现除ABA-缺陷型种子胶囊和果肉水势变化特殊外,3种类型果实水分状况变化基本一致;在整个发育时期内.前期种子胶囊和果肉水分流向种子,中期种子水分流向种子胶囊和果肉,后期种子和果实间的水势达到平衡。鉴于种胚脱水是一种主动过程,种胚水势一直低于整个种子、种子胶囊和果肉。内源赤霉素可明显增加果实和种子的重量,但对增加种胚溶质的作用不大。由于内源脱落酸可以促使果实成熟和衰老,促进果实细胞解体,大大降低种子胶囊和果肉水势,因而抑制成熟种子在果实内萌发。  相似文献   

18.
19.
Water uptake and germination rate of chickpea and pea seedswere compared under changing water potentials in sand and soilaggregate columns and osmotic solutions. The final water uptake and germination were the same in allcases for a given water potential, but the rates were lowerfor seeds planted in sand columns, probably due to mechanicalconstraints imposed on the swelling seed by the dense sand,since the capillary conductivity, and the diffusivity to waterof the sand were very high. The area of the seed in contact with soil is not of importanceif soil aggregates are small as compared to the seeds but increasesin importance when the seeds and the soil aggregates are ofthe same size and at low water potentials.  相似文献   

20.
Two tomato (Lycopersicon esculentum Mill.) lines with greatly different capabilities to germinate at 10°C were compared with respect to sensitivity to experimental treatments which affect the water status of the embryo. Germination rates and final percentages could be drastically changed (at 25°C) by (a) removing the mechanical constraint from the radicle tip, (b) imposing water stress by an osmoticum, (c) stress hardening of the seeds through osmotic pretreatment, and (d) inhibiting embryo expansion by abscisic acid (ABA). All treatments showed a similar difference in germination vigor between the two lines indicating that cold sensitivity is in fact a matter of water relations rather than of phase transitions in membrane lipids. Inhibition of germination by ABA was completely abolished by removing the mechanical constraint from the radicle tip. Osmotic stress of −3 bar which quantitatively replaced this constraint in inhibiting germination also restored the sensitivity to ABA. It is concluded that all these treatments act on the balance between the hydraulic extension force of the embryo radicle and the opposing force of the seed layers covering the radicle tip. The difference in cold sensitivity between the two seed lines resides either in the osmotic potential or the pressure potential of the germinating embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号