首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The small heat shock protein hsp27 is associated with aggressive tumor behavior in certain subsets of breast cancer patients. Previously we demonstrated that hsp27 overexpression in breast cancer cells increased in vitro and in vivo invasiveness, suggesting that hsp27 influences the metastatic process. To investigate this role for hsp27, we have utilized MDA-MB-231 breast cancer cells that overexpress hsp27 and cDNA expression array technology. We demonstrate that hsp27 overexpression up-regulates MMP-9 expression and activity and down-regulates Yes expression. Furthermore, our results suggest that Yes may be involved in regulating MMP-9 expression, as well as in vitro invasion. Reconstitution of Yes expression by transfection into hsp27-overexpressing cells decreased MMP-9 expression, and increased in vitro invasiveness, abrogating the phenotype conferred by hsp27 overexpression. Therefore, our results provide a new potential mechanism by which hsp27 affects the metastatic cascade-through regulation of MMP-9 and Yes expression.  相似文献   

3.
The stress protein hsp27 is constitutively expressed in several human cells and shows a rapid phosphorylation following treatment with tumor necrosis factor-α (TNF-α). hsp27 usually displays native molecular mass ranging from 100 to 700 kDa. Here, we have analyzed the TNF-α-mediated changes in the phosphorylation, cellular localization, and structural organization of hsp27 in HeLa cells. We report that the TNF-α-mediated hsp27 phosphorylation is a long-lasting phenomenon that correlates with the cytostatic effect of this cytokine. Following TNF-α treatment, the rapid phosphorylation of hsp27 occurred concomitantly with complex changes in the intracellular distribution and structural organization of this protein. This resulted in the quantitative redistribution of hsp27 toward the soluble phase of the cytoplasm. In addition, during the first 2 h of TNF-α treatment, a transient increase in the native molecular mass of most hsp27 molecules (≤ 700 kDa) occurred. Then, by 4 h of TNF-α treatment, the native size of this stress protein drastically regressed (< 200 kDa). During this phenomenon, the phosphorylated isoforms of hsp27 remained concentrated in the small or medium-sized oligomers (< 300 kDa) of this protein. We also analyzed the properties of human hsp27 in transfected murine L929 cell lines that constitutively express this protein. In these cells, TNF-α induced modifications in the phosphorylation, intracellular distribution, and oligomerization of human hsp27 similar to those observed in HeLa cells. Moreover, the expression of hsp27 in L929 cells was found to correlate with a reduced cytotoxicity of this cytokine. Hence, the complex changes in the phosphorylation, intracellular locale and structural organization of human hsp27 may be related to the protective activity of this protein against the deleterious effects induced by TNF-α.  相似文献   

4.
5.
MAP kinase-activated protein kinase-2 (MAPKAP kinase-2) phosphorylates the serine residues in murine heat shock protein 25 (hsp25) and human heat shock protein 27 (hsp27) which are phosphorylated in vivo in response to growth factors and heat shock, namely Ser15 and Ser86 (hsp25) and Ser15, Ser78 and Ser82 (hsp27). Ser86 of hsp25 and the equivalent residue in hsp27 (Ser82) are phosphorylated preferentially in vitro. The small heat shock protein is present in rabbit skeletal muscle and hsp25 kinase activity in skeletal muscle extracts co-purifies with MAPKAP kinase-2 activity throughout the purification of the latter enzyme. These results suggest that MAPKAP kinase-2 is the enzyme responsible for the phosphorylation of these small heat shock proteins in mammalian cells.  相似文献   

6.
Abstract We have examined whether non-thermal exposures of cultures of the human endothelial cell line EA.hy926 to 900 MHz GSM mobile phone microwave radiation could activate stress response. Results obtained demonstrate that 1-hour non-thermal exposure of EA.hy926 cells changes the phosphorylation status of numerous, yet largely unidentified, proteins. One of the affected proteins was identified as heat shock protein-27 (hsp27). Mobile phone exposure caused a transient increase in phosphorylation of hsp27, an effect which was prevented by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38MAPK). Also, mobile phone exposure caused transient changes in the protein expression levels of hsp27 and p38MAPK. All these changes were non-thermal effects because, as determined using temperature probes, irradiation did not alter the temperature of cell cultures, which remained throughout the irradiation period at 37 ± 0.3 °C. Changes in the overall pattern of protein phosphorylation suggest that mobile phone radiation activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK stress response pathway. Based on the known functions of hsp27, we put forward the hypothesis that mobile phone radiation-induced activation of hsp27 may (i) facilitate the development of brain cancer by inhibiting the cytochrome c/caspase-3 apoptotic pathway and (ii) cause an increase in blood-brain barrier permeability through stabilization of endothelial cell stress fibers. We postulate that these events, when occurring repeatedly over a long period of time, might become a health hazard because of the possible accumulation of brain tissue damage. Furthermore, our hypothesis suggests that other brain damaging factors may co-participate in mobile phone radiation-induced effects.  相似文献   

7.
Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737(orpk/orpk) ) mouse, with impaired cilia assembly, exhibit a reduction in the actin stress fibers and focal adhesions compared to wild-type (WT). In contrast, endothelial cells from polycystin-1 deficient mice (pkd1(null/null) ), with impaired cilia function, display robust stress fibers, and focal adhesion assembly. We found that the Tg737(orpk/orpk) cells exhibit impaired directional migration and endothelial cell monolayer permeability compared to the WT and pkd1(null/null) cells. Finally, we found that the expression of heat shock protein 27 (hsp27) and the phosphorylation of focal adhesion kinase (FAK) are downregulated in the Tg737(orpk/orpk) cells and overexpression of hsp27 restored both FAK phosphorylation and cell migration. Taken together, these results demonstrate that disruption of the primary cilia structure or function compromises the endothelium through the suppression of hsp27 dependent actin organization and focal adhesion formation, which may contribute to the vascular dysfunction in ciliopathies.  相似文献   

8.
Expression of small stress proteins (shsp) enhances the survival of mammalian cells exposed to heat or oxidative injuries. Recently, we have shown that the expression of shsp from different species, such as human hsp27, Drosophila hsp27 or human alphaB-crystallin protected murine L929 cells against cell death induced by tumor necrosis factor (TNFalpha), hydrogen peroxide or menadione. Here, we report that, in growing L929 cell lines, the presence of these shsp decreased the intracellular level of reactive oxygen species (ROS). shsp expression also abolished the burst of intracellular ROS induced by TNFalpha. Several downstream effects resulting from the TNFalpha-mediated ROS increment, such as NF-kappaB activation, lipid peroxidation and protein oxidation, were inhibited by shsp expression. We also report that the expression of these different shsp raised the total glutathione level in both L929 cell lines and transiently transfected NIH 3T3-ras cells. This phenomenon was essential for the shsp-mediated decrease in ROS and resistance against TNFalpha. Our results therefore suggest that the protective activity shared by human hsp27, Drosophila hsp27 and human alphaB-crystallin against TNFalpha-mediated cell death and probably other types of oxidative stress results from their conserved ability to raise the intracellular concentration of glutathione.  相似文献   

9.
Overexpression of anti-apoptotic Bcl2 family proteins is often seen in cancers rendering them insensitive to apoptosis inducing anticancer strategies. Anti-apoptotic Bcl2 family proteins are associated with different organelles like mitochondria and endoplasmic reticulum (ER) and exert their anti-apoptotic activity by inhibiting the release of Cyt.C from mitochondria irrespective of its localization. Here, we have identified a long term survival function for Bcl2 targeted at ER in mammalian system compared to wild type Bcl2 that is mediated by enhanced phosphorylation of heat shock protein 27 at ser 15, 78 and 82 sites with inhibition of caspase9 activity. Phosphorylation of hsp27 was prevented and the survival of ER-Bcl2 cells was reversed by inhibiting p38 and MEK suggesting that these kinases can act as the upstream targets for hsp27 phosphorylation. The results suggest that Bcl2 possess additional survival function in the regulation of apoptosis which is primarily regulated by its association with the ER in an hsp27 dependent manner. The interplay of both hsp27 and ER-Bcl2 in providing long term survival to cancer cells is interesting since both of these proteins are overexpressed in tumors with aggressive phenotype. The results suggest that spatial localization of Bcl2 family proteins also play a key role in long term survival of cancers indicating another level of functional regulation of Bcl2 in cancer cell survival.  相似文献   

10.
11.
Denbinobin (5-hydroxy-3,7-dimethoxy- 1,4-phenanthraquinone), a biologically active chemical isolated from Ephemerantha lonchophylla, has been demonstrated to display anti-cancer activity. Breast cancer is the leading cause of female mortality, and the high mortality is mainly attributable to metastasis. Src kinase activity is elevated in many human cancers, including breast cancer, and is often associated with aggressive disease. In the present study, we examined the anti-metastatic effects of denbinobin through decreasing Src kinase activity in human and mouse breast cancer cells. Denbinobin caused significant block of Src kinase activity in both human and mouse breast cancer cells. Moreover, phosphorylation of the signaling molecules focal adhesion kinase, Crk-associated substrate and paxillin downstream of Src was also inhibited by denbinobin. Furthermore, denbinobin inhibited the in vitro migration, invasion and in vivo metastasis of breast cancers in a mouse metastatic model. The denbinobin-treated group showed a significant reduction in tumor metastasis, orthrotopic tumor volume, and spleen enlargement compared to the control group. In addition, transfection of breast cancer cells with a plasmid coding for a constitutively active Src prevented the denbinobin-mediated phosphorylation of Src and downstream molecules and cell migration. Our findings provide evidences that denbinobin inhibits Src-mediated signaling pathways involved in controlling breast cancer migration and metastasis, suggesting that it has therapeutic potential in breast cancer treatment.  相似文献   

12.
The mu- and m-calpains are major members of the calpain family that play an essential role in regulating cell motility. We have recently discovered that nicotine-activated protein kinase C iota enhances calpain phosphorylation in association with enhanced calpain activity and accelerated migration and invasion of human lung cancer cells. Here we found that specific disruption of protein phosphatase 2A (PP2A) activity by expression of SV40 small tumor antigen up-regulates phosphorylation of mu- and m-calpains whereas C2-ceramide, a potent PP2A activator, reduces nicotine-induced calpain phosphorylation, suggesting that PP2A may function as a physiological calpain phosphatase. PP2A co-localizes and interacts with mu- and m-calpains. Purified, active PP2A directly dephosphorylates mu- and m-calpains in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppresses nicotine-stimulated phosphorylation of mu- and m-calpains, which is associated with inhibition of calpain activity, wound healing, cell migration, and invasion. By contrast, depletion of PP2A/C by RNA interference enhances calpain phosphorylation, calpain activity, cell migration, and invasion. Importantly, C2-ceramide-induced suppression of calpain phosphorylation results in decreased secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential clinic relevance in controlling metastasis of lung cancer. These findings reveal a novel role for PP2A as a physiological calpain phosphatase that not only directly dephosphorylates but also inactivates mu- and m-calpains, leading to suppression of migration and invasion of human lung cancer cells.  相似文献   

13.
The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast metastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.  相似文献   

14.
The heat shock proteins are essential players in the development of cancer and they are prime therapeutic targets. Targeting multiple hsps in dual therapies decreases the likelihood of drug resistance compared to utilizing mono-therapies. Further, employing an hsp inhibitor in combination with another therapy has proven clinically successful. Examples of efficacious strategies include the inhibition of hsp27, which prevents protein aggregation, controlling hsp40’s role as an ATPase modulator, and inhibiting hsp70 from acting as a molecular chaperone. While hsp40 therapies are just in the beginning stages, hsp27 and hsp70 therapies have been successfully used in dual inhibition treatments with hsp90 inhibitors and in combinational therapy with antineoplastic drugs. Both dual and combinatorial therapies show encouraging results when used in treating chemotherapeutically resistant diseases.  相似文献   

15.
16.
Overexpression of the heat-shock protein hsp27 protein in primary breast cancers has been associated with early relapse in women with breast cancer. This study was designed to determine the role of the hsp27 protein in lymphocyte recognition of estrogen-receptor(ER)-positive breast cancer cells and to assess the effect of hsp27 expression on lymphocyte-mediated lysis. The hsp27 cDNA was inserted into the pHbAPr-1-neo plasmid expression vector and driven by the constitutive actin promoter. The ER-positive MCF-7 human breast cancer cell line was then transfected with this vector and the resulting clonal cell lines were confirmed to overexpress hsp27. hsp27-transfected clonal cell lines stimulated the proliferation of fresh peripheral blood lymphocytes (PBL) significantly better than control cells transfected with the expression vector alone. When clonal T cell lines were utilized as effectors, hsp27-transfected cell lines were significantly better targets for lysis than a control-transfected MCF-7 cell line. In contrast, hsp27-transfected cell lines had no increase in susceptibility to lymphokine-activated-killer- or natural-killer-mediated lysis. These results suggest that overexpression of the hsp27 protein in ER-positive MCF-7 cells stimulated the proliferation of fresh PBL and the lysis of MCF-7 cells by T cell clones.  相似文献   

17.
18.
Nischarin is a novel protein that regulates cell migration by inhibiting p21-activated kinase (PAK). LIM kinase (LIMK) is a downstream effector of PAK, and it is known to play an important role in cell invasion. Here we show that nischarin also associates with LIMK to inhibit LIMK activation, cofilin phosphorylation, and LIMK-mediated invasion of breast cancer cells, suggesting that nischarin regulates cell invasion by negative modulation of the LIMK/cofilin pathway. The amino terminus of nischarin binds to the PDZ and kinase domains of LIMK. Although LIMK activation enhances the interaction with nischarin, only phosphorylation of threonine 508 of LIMK is crucial for the interaction. Inhibition of endogenous nischarin expression by RNA interference stimulates breast cancer cell invasion. Also, nischarin small interfering RNA (siRNA) enhances cofilin phosphorylation. In addition, knock-down of nischarin showed branched projection actin structures. Collectively these data indicate that nischarin siRNA may enhance random migration, resulting in stimulation of invasion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号