首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
Summary Beta-glucuronidase (GUS) was histochemically analyzed in anthers and pollen of potato, tobacco and tomato. GUS activity was determined in transgenic plants containing a chimaeric GUS gene and in untransformed plants. In anthers of transgenic plants at premeiotic and meiotic stages of sporogenous development, indigogenic precipitation indicative of GUS activity was consistently manifest in cells of the vascular cylinder, the connectivum and the stomium while no activity was found in the tapetal and sporogenous tissues. At similar stages, anther sections of untransformed plants did not show any indigo blue staining. At later stages of microspore and pollen development, anthers of both transgenic and untransformed plants demonstrated consistently high levels of GUS activity in tapetal and sporogenic cells. In anthers of transgenic plants, GUS was also present in the vascular cylinder, the connectivum and the stomium. These results indicate that in anthers of transgenic potato, tobacco and tomato the chimaeric GUS gene product was localized tissue specifically. They also show that an endogenous GUS gene was expressed in a temporal- and spatial-specific manner in the tapetum and pollen of both transformed and untransformed plants.  相似文献   

2.
PSG076 is a pollen-specific gene isolated from wheat. The 1.4-kb promoter upstream of the ATG start codon was isolated by inverse-PCR (IPCR). To determine its activity, the PSG076 promoter was fused with the ??-glucuronidase (GUS) reporter gene and introduced into tobacco. Histochemical analysis in transgenic tobacco showed that GUS activity was detected in late bicellular pollen grains and increased rapidly in mature pollen. GUS activity was also detected in pollen tubes of transgenic tobacco. No GUS activity was found in other floral and vegetable tissues. These results indicate that the PSG076 promoter directs pollen-specific activity at late stages of pollen development and pollen tube growth. Deletion analysis showed that a 0.4?kb fragment of the promoter was enough to confer pollen-specific expression.  相似文献   

3.
To understand the expression pattern of theS RNase gene in the floral tissues associated with self-incompatibility (SI), promoter region of S11 RNase gene was serially deleted and fused GUS. Five chimeric constructs containing a deleted promoter region of the S11 RNase gene were constructed, and introduced intoNicotiana tabacum using Agrobacterium-mediated transformation. Northern blot analysis revealed that the GUS gene was expressed in the style, anther, and developing pollen of all stages in each transgenic tobacco plant The developing pollen expressed the same amount of GUS mRNA in all stages in transgenic tobacco plants. In addition, histochemical analysis showed GUS gene expression in vascular bundle, endothecium, stomium, and tapetum cells during pollen development in transgenic plants. From these results, it is speculated that SI ofLycopersicon peruvianum may occur through the interaction ofS RNase expressed in both style and pollen tissues.  相似文献   

4.
5.
四环素诱导组织特异性表达系统的构建   总被引:2,自引:0,他引:2  
如果获得一种可以特异调控基因表达的系统。对于研究某一基因在各个不同发育时期的功能会有很大的帮助。为了控制外源基因在特定的时间和组织内在转基因植物中表达。将四环素诱导元件和花药绒毡层特异表达启动子TA29结合。构建了一个新的系统。通过基因枪将该系统转入烟煤草(Nicotiana tabacumL.cv.Wisconsin38)组织,GUS瞬时表达结果表明,四环素诱导前,没有任何烟草组织染上蓝色,表明该系统不表达;而四环素诱导仅30min后,花药就染上明显蓝色,而且集中在花药绒毡层,其对照子房在四环素诱导前和诱导后均未染蓝色。这些结果表明。该系统既是四环素诱导又是花药绒毡层特异表达的。  相似文献   

6.
如果获得一种可以特异调控基因表达的系统,对于研究某一基因在各个不同发育时期的功能会有很大的帮助.为了控制外源基因在特定的时间和组织内在转基因植物中表达,将四环素诱导元件和花药绒毡层特异表达启动子TA29结合,构建了一个新的系统.通过基因枪将该系统转入烟草(Nicotiana tabacum L. cv.Wisconsin 38)组织,GUS瞬时表达结果表明,四环素诱导前,没有任何烟草组织染上蓝色,表明该系统不表达;而四环素诱导仅30min后,花药就染上明显蓝色,而且集中在花药绒毡层.其对照子房在四环素诱导前和诱导后均未染上蓝色.这些结果表明,该系统既是四环素诱导又是花药绒毡层特异表达的.  相似文献   

7.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes a key step in isoprenoid metabolism leading to a range of compounds that are important for the growth, development and health of the plant. We have isolated 7 classes of genomic clones encoding HMGR from a potato genomic library. Comparison of nucleic acid sequences reveals a high degree of identity between all seven classes of clones and the potato hmg 1 gene described by Choi et al. (Plant Cell 4: 1333, 1992), indicating that all are members of the same subfamily in potato. A representative member (hmg 1.2) of the most abundant class of genomic clones was selected for further characterization. Transgenic tobacco and potato containing the -glucuronidase (GUS) reporter gene under the control of the hmg 1.2 promoter expressed GUS activity constitutively at a low level in many plant tissues. High levels of GUS activity were observed only in the pollen. GUS assays of isolated pollen, correlations of GUS activity with the HMGR activity of anthers, hmg 1.2 promoter deletion studies, and segregation analysis of the expression of hmg 1.2::GUS among the R2 pollen of R1 progeny plants demonstrated that the hmg 1.2 promoter controls pollen expression.  相似文献   

8.
9.
Tissue specific expression of transgenes in plant species has several advantages over constitutive expression. Identification of ovule specific promoters would be useful in genetic engineering of plants with a variety of desirable traits such as genetically engineered parthenocarpy, female sterile plants or seedless fruits. Relative inaccessibility and difficulty in harvesting adequate amounts of tissue at known developmental stages has impeded the progress in cloning of promoters involved in ovule development. In the present study an ovule specific promoter was cloned from Arabidopsis AGL11 gene and used to express GUS (beta-glucuronidase) gene in transgenic Arabidopsis. Histochemical staining of GUS appeared in the center of young ovary (ovules), but no detectable GUS activity was observed in vegetative plant tissues, sepals, petals and androecium. AGL11 gene promoter can be useful to modify the developmental path of plants by expressing either plant hormones or lethal genes for agronomic purpose.  相似文献   

10.
A chimeric gene consisting of the -glucuronidase (gusA) reporter gene under the control of the metallothionein-like promoter cgMT1 from the tropical tree Casuarina glauca was introduced into Nicotiana tabacum via Agrobacterium tumefaciens and into Oryza sativa by particle bombardment. The strongest histochemical staining for GUS activity was observed in the root system of the transgenic plants, and especially in lateral roots. In contrast, a relatively low level of reporter gene expression was seen in the aerial tissues and GUS staining was located mainly in the plant vascular system. The average ratio of GUS activity between root and leaf was found to be 13:1 in tobacco and 1.5:1 in rice. The pattern of cgMT1 promoter activity in floral organs was found to be different in tobacco and rice. High levels of gusA gene expression were detected in the ovules, pollen grains and tapetum, whereas in rice PcgMT1 directs expression to the vascular system of the floral organs. These results suggest that PcgMT1 is potentially useful in molecular breeding to express genes of interest whose products are preferentially needed in roots.  相似文献   

11.
12.
13.
To determine the responses of plants to deficiencies of multiple metals, tobacco plants ( Nicotiana tabacum L.) were subjected to treatments that were deficient in combinations of Fe and two other micronutrients, Zn and Mn. The response was measured using macro indices, including plant appearance, FW, chlorophyll concentration, and mineral concentrations, and with a molecular index, the barley ( Hordeum vulgare L.) Ids2 promoter / GUS fusion gene system (Yoshihara et al. 2003, Plant Biotech 20: 33–41). Tobacco plants grown in medium with combined deficiencies grew better and had higher chlorophyll concentrations than did plants grown on medium deficient in Fe only, although the measured Fe concentrations in the plant tissues were essentially the same. The Ids2/GUS expression responded to Fe deficiency, but not to Mn or Zn deficiencies in tobacco plants when Fe was present. Tobacco plants grown in medium with combined deficiencies had clearly detectable GUS activity, but the response was significantly lower than that in tobacco plants deficient in Fe only. The Fe-deficiency symptoms were mitigated at both the visible and molecular levels. Although more precise experimental evidence is needed to explain the mitigation mechanism, the balance of minerals was shown to be an important parameter to consider when estimating iron deficiency based on tobacco plant responses.  相似文献   

14.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

15.
The ability of most higher plants to withstand freezing can be enhanced by cold acclimation, although the freezing tolerance of plant tissues is also affected by their developmental stage. In addition, low temperature has pleiotropic effects on many plant developmental processes such as vernalization. The interaction between plant development and low temperature implies that some genes are regulated by both environmental factors and developmental cues. Although a number of cold-inducible genes from plants have been identified, information concerning their regulation during plant development is limited. In order to understand their developmental regulation and obtain possible clues as to function, the promoters of kin1 and cor6.6, two cold- and abscisic acid (ABA)-regulated genes from Arabidopsis thaliana, were fused to the -glucuronidase (GUS)-coding sequence and the resulting constructs were used to transform tobacco and A. thaliana. Transgenic plants with either the kin1 or cor6.6 promoter showed strong GUS expression in pollen, developing seeds, trichomes and, most interestingly, in guard cells. During pollen development, maximum GUS activity was found in mature pollen. In contrast, the maximum GUS activity during seed development was during early embryogenesis. These patterns of expression distinguish kin1 and cor6.6 from related lea genes which are strongly expressed during late embryogenesis. There was no major qualitative difference in patterns of GUS expression between kin1 and cor6.6 promoters and the results were similar for transgenic tobacco and Arabidopsis. Considering the results described, as well as those in an accompanying paper Wang et al., 1995, Plant Mol Biol 28: 605–617 (this issue), we suggest that osmotic potential might be a major factor in regulating the expression of kin1 and cor6.6 during several developmental processes. The implication of the results for possible function of the gene products is discussed.  相似文献   

16.
The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection.  相似文献   

17.
Expression patterns of three Arabidopsis thaliana cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions were investigated in tobacco plants. While cytokinin oxidase/dehydrogenase promoter 2 showed no expression in tobacco, the cytokinin oxidase/dehydrogenase promoters 3 and 4 were active in various tissues throughout development of the tobacco. Recently, the 1452 bp promoter region of AtCKX3 was reported as almost inactive in Arabidopsis. In contrast, the 1627 bp DNA fragment preceding the AtCKX3 coding region drove expression of the reporter GUS gene in various tobacco tissues. The promoter was mainly expressed in tobacco leaves and roots during early stages of development but also later in young flower buds as well as in pollen grains. The construct was particularly active before (hypocotyl region) and during (vascular system) lateral root initiation, supporting the idea of an inhibitory role of active cytokinins in the process of root initiation. The cytokinin oxidase/dehydrogenase promoter 4::GUS fusion in tobacco was shown to share some common (but weaker) expression patterns with promoter 3, namely in the leaves and pollen, but also conferred specific expression in tobacco root cap cells and trichomes. In addition, the response of cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions to infection with the leafy gall-forming bacteria Rhodococcus fascians was examined. While an avirulent strain of R. fascians did not induce expression of any of the cytokinin oxidase/dehydrogenase promoters, the cytokinin oxidase/dehydrogenase promoter 3::GUS fusion was specifically induced at the site of infection when plants were challenged with a virulent strain of R. fascians, providing a possible explanation for the lack of significantly elevated cytokinin concentrations in tissues infected with virulent strains of R. fascians.This revised version was published online in August 2005 with some black and white figures replaced by coloured figures.  相似文献   

18.
A potential problem in the field release of transgenic plants is the spread of foreign gene products via pollen. Therefore, the use of the tomato pollen-specific lat52 gene promoter was investigated as a means of targeting antisense RNA to pollen without affecting transgene expression elsewhere in the plant. A transgenic tobacco line T115, which showed GUS expression in pollen, leaves and roots were retransformed with a construct containing the pollen-specific lat52 promoter driving the GUS encoding uid A gene in antisense orientation. From 24 independent transformants obtained, 19 showed a significant reduction in pollen GUS activity. Of these lines, four showed a reproducible antisense effect in pollen in the next generation, while it was shown in one line that GUS activity in leaves and roots was also unaffected. To ascertain the effectiveness of the antisense strategy to downregulate very high levels of pollen expression, a lat52-gus antisense construct was introduced into tobacco lines containing lat52-gus, which had pollen GUS activity of up to 250 times greater than in line T115. Results showed that 30 out of 34 independent lines exhibited a significant antisense effect in pollen, confirming the effectiveness of pollen-targeted antisense strategy to reduce undesirable expression in pollen independent of expression level in pollen.  相似文献   

19.
20.
Regulation of the Osmotin Gene Promoter   总被引:11,自引:1,他引:10       下载免费PDF全文
By introducing a chimeric gene fusion of the osmotin promoter and [beta]-glucuronidase into tobacco by Agrobacterium-mediated transformation, we have demonstrated a very specific pattern of temporal and spatial regulation of the osmotin promoter during normal plant development and after adaptation to NaCl. We have found that the osmotin promoter has a very high natural level of activity in mature pollen grains during anther dehiscence and in pericarp tissue at the final, desiccating stages of fruit development. GUS activity was rapidly lost after pollen germination. The osmotin promoter thus appears to be unique among active pollen promoters described to date in that it is active only in dehydrated pollen. The osmotin promoter was also active in corolla tissue at the onset of senescence. Adaptation of plants to NaCl highly stimulated osmotin promoter activity in epidermal and cortex parenchyma cells in the root elongation zone; in epidermis and xylem parenchyma cells in stem internodes; and in epidermis, mesophyll, and xylem parenchyma cells in developed leaves. The spatial and temporal expression pattern of the osmotin gene appears consistent with both osmotic and pathogen defense functions of the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号