首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用Klebsiella pneum oniaenifHDK 为探针与Klebsiella planticola 19-1 DNA Southern 杂交表明,K.planticola 19-1 中存在与nifHDK 同源的片段。用凝胶内溶菌及电场倒转技术检测在K.planticola 19-1 中存在一大质粒。用K.pneum oniae nif HDK 探针与大质粒DNASouthern 杂交证明固氮酶结构基因定位于大质粒  相似文献   

2.
A physical and genetical map of the plasmid pEA3 indigenous to Enterobacter agglomerans is presented. pEA3 is a 111-kb large plasmid containing a 23-kb large cluster of nif genes which shows extensive homology (Southern hybridization and heteroduplex analysis) to the entire nif gene cluster of Klebsiella pneumoniae (Kp) M5a1. All the nif genes on pEA3 are organized in the same manner as in K. pneumoniae, except nifJ, which is located on the left end of pEA3 nif gene cluster (near nifQB). A BamHI restriction map of pEA3 and a detailed restriction map of the 23-kb nif region on pEA3 is also presented. The nif genes of pEA3 showed a low level of acetylene reduction in Escherichia coli, demonstrating that these genes are functional and contain the whole genetic information required to fix nitrogen. The origin of vegetative replication (OriV) of pEA3 was localized about 5.5 kb from the right end of the nif gene cluster. In addition to pEA3, large plasmids from four other strains of E. agglomerans showed homology to all the Kp nif genes tested, indicating that in diazotrophic strains of E. agglomerans nif genes are usually located on plasmids. In contrast, in most of the free-living, nitrogen-fixing bacteria the nif genes are on chromosome.  相似文献   

3.
对几种质粒检测方法进行了比较 ,发现原位裂解法能比较满意地检测到巴西固氮螺菌 (Azospirillumbrasilense)的巨大质粒。利用改进后的原位裂解法能比较稳定地检测到W 80 2菌株中的巨大质粒。通过Southern blotting的方法将W 80 2菌的染色体及巨大质粒转到尼龙膜上 ,与用地高辛标记的含nifHDK基因的 pSA30质粒杂交 ,发现W80 2菌株的nifHDK基因定位在染色体上。  相似文献   

4.
In our studies of nif gene regulation, we have observed that certain hybrid nif plasmids drastically inhibit the expression of the chromosomal nif genes of Klebsiella pneumonia. Wild-type (Nif+) K. pneumoniae strains that acquire certain hybrid nif plasmids also acquire the Nif- phenotype; these strains lose 90 to 99% of all detectable nitrogen fixation activity and grow poorly (or not at all) on solid media with N2 as the sole nitrogen source. We describe experiments which defined this inhibition of the Nif+ phenotype by hybrid nif plasmids and identify and characterize four nif DNA regions associated with this inhibition. We show that plasmids carrying these nif regions could recombine with, but not complement, nif chromosomal mutations. Our results suggest that inhibition of the Nif+ phenotype will provide a useful bioassay for some of the factors that mediate nif gene expression.  相似文献   

5.
By using cloned Rhizobium meliloti nodulation (nod) genes and nitrogen fixation (nif) genes, we found that the genes for both nodulation and nitrogen fixation were on a plasmid present in fast-growing Rhizobium japonicum strains. Two EcoRI restriction fragments from a plasmid of fast-growing R. japonicum hybridized with nif structural genes of R. meliloti, and three EcoRI restriction fragments hybridized with the nod clone of R. meliloti. Cross-hybridization between the hybridizing fragments revealed a reiteration of nod and nif DNA sequences in fast-growing R. japonicum. Both nif structural genes D and H were present on 4.2- and 4.9-kilobase EcoRI fragments, whereas nifK was present only on the 4.2-kilobase EcoR2 fragment. These results suggest that the nif gene organizations in fast-growing and in slow-growing R. japonicum strains are different.  相似文献   

6.
7.
华葵根瘤菌nifA基因的克隆和功能分析   总被引:2,自引:0,他引:2  
华葵根瘤菌(Mesorhizobium huakuiiR.astragali)159的nifA基因的序列分析表明,该基因全长1227bp,编码分子量为44734D的Nif A蛋白。与其它NifA蛋白的序列比较发现,华葵根瘤菌NifA蛋白也存在保守的中间结构域和C末端DNA结合结构域,但其氨基端缺失。Tn5定点突变得到的突变体是Nif-表型。构建了nifA基因组成型表达的质粒,此质粒在大肠杆菌中对华葵根瘤菌nifHlacZ有激活作用。  相似文献   

8.
Southern hybridization with nif (nitrogen fixation) and nod (nodulation) DNA probes from Rhizobium meliloti against intact plasmid DNA of Rhizobium japonicum and Bradyrhizobium japonicum strains indicated that both nif and nod sequences are on plasmid DNA in most R. japonicum strains. An exception is found with R. japonicum strain USDA194 and all B. japonicum strains where nif and nod sequences are on the chromosome. In R. japonicum strains, with the exception of strain USDA205, both nif and nod sequences are on the same plasmid. In strain USDA205, the nif genes are on a 112-megadalton plasmid, and nod genes are on a 195-megadalton plasmid. Hybridization to EcoRI digests of total DNA to nif and nod probes from R. meliloti show that the nif and nod sequences are conserved in both R. japonicum and B. japonicum strains regardless of the plasmid or chromosomal location of these genes. In addition, nif DNA hybridization patterns were identical among all R. japonicum strains and with most of the B. japonicum strains examined. Similarly, many of the bands that hybridize to the nodulation probe isolated from R. meliloti were found to be common among R. japonicum strains. Under reduced hybridization stringency conditions, strong conservation of nodulation sequences was observed in strains of B. japonicum. We have also found that the plasmid pRjaUSDA193, which possess nif and nod sequences, does not possess sequence homology with any plasmid of USDA194, but is homologous to parts of the chromosome of USDA194. Strain USDA194 is unique, since nif and nod sequences are present on the chromosome instead of on a plasmid as observed with all other strains examined.  相似文献   

9.
10.
A single large plasmid was isolated from multiplasmid-harboring strains Rhizobium leguminosarum 1001 and R. trifolii 5. These single plasmids, as well as the largest plasmid detectable in R. phaseoli 3622, hybridized with part of the nif structural genes of Klebsiella pneumoniae. In contrast, the plasmids of R. meliloti strains V7 and L5-30 did not show hybridization with the nif genes of K. pneumoniae, indicating that these genes might be located either on the chromosome or on a much larger plasmid which as yet has not been isolated. Studies of the homology between plasmids of fast-growing Rhizobium species showed that a specific deoxyribonucleic acid sequence, which carries the structural genes for nitrogenase, is highly conserved on a plasmid in R. leguminosarum, R. trifolii, and R. phaseoli. Furthermore, it was found that this type of plasmid in the different species shares extensive deoxyribonucleic acid homology, suggesting that strains in the R. leguminosarum cluster have preserved a nif plasmid.  相似文献   

11.
A nif gene probe from Rhizobium meliloti was used to isolate a recombinant bacteriophage from a Frankia sp. ArI3 gene bank. There is a large homology between nif D and nif H genes of R. meliloti or Klebsiella pneumoniae and Frankia DNA sequences. Approximately 4.5 kb to the right of nif K, we have localized a DNA region hybridizing to a R. meliloti probe containing nif A and nif B genes. The extent of the homology was greater for nif B than for nif A.  相似文献   

12.
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.  相似文献   

13.
The location of structural nitrogen-fixation genes was determined for the slow- and fast-growing types of Rhizobium japonicum. Slow-growing R. japonicum strains do not harbor structural nif genes, homologous to nifD and nifH, on large plasmids (100 to 200 megadaltons). In contrast, all fast-growing R. japonicum strains, except PRC194, contain structural nif genes on large plasmids.  相似文献   

14.
15.
Escherichia coli carrying the entire nif gene cluster from Klebsiella pneumoniae on a multicopy plasmid becomes more O2-resistant in a N-free medium as a result of the integration of the nif gene cluster into the chromosome and the loss of the plasmid (H.Iwahashi and J.Someya, Biochem. Biophys. Res. Comm. 1990, 168: 288–294). Our purpose is to characterize the physiological reason why the strain became O2-resistant by measuring the levels of nif proteins in cells under microaerobic conditions. The O2-resistant strain had a higher amount of NifH and a lower amount of NifL under microaerobic conditions (compared to that under anaerobic conditions), while the parent strain showed the opposite characteristics. Thus, the biochemical mechanism of the O2-resistant strain is attributed to the strain's ability to synthesize and maintain a high amount of NifH and a low amount of NifL under microaerobic conditions. © Rapid Science Ltd. 1998  相似文献   

16.
Plasmid DNA of six strains of Rhizobium galegae was blotted onto nitrocellulose and hybridized with the 4.8 kb PstI fragment of pRme4lb, a megaplasmid carrying the nifH and the nifD genes of Rhizobium meliloti. DNA sequences homologous to the nif genes were localized on the megaplasmid or on the large plasmid bands of the R. galegae strains tested. In three of the strains analysed the nif genes were located on the megaplasmids. In the other three strains investigated, which also possessed megaplasmids, the nif genes were located on the smaller plasmids.  相似文献   

17.
18.
Rhizobium fredii is a fast-growing rhizobium isolated from the primitive Chinese soybean cultivar Peking and from the wild soybean Glycine soja. This rhizobium harbors nif genes on 150- to 200-megadalton plasmids. By passage on acridine orange plates, we obtained a mutant of R. fredii USDA 206 cured of the 197-megadalton plasmid (USDA 206C) which carries both nif and nod genes. This strain, however, has retained its symbiotic effectiveness. Probing EcoRI digests of wild-type and cured plasmid DNA with a 2.2-kilobase nif DH fragment from Rhizobium meliloti has shown four homologous fragments in the wild-type strain (4.2, 4.9, 10, and 11 kilobases) and two fragments in the cured strain (4.2 and 10 kilobases). EcoRI digests of total DNA show four major bands of homology (4.2, 4.9, 5.8, and 13 kilobases) in both the wild-type and cured strains. The presence of major bands of homology in the total DNA not present in the plasmid DNA indicated chromosomal nif genes. Probing of HindIII digests of total and plasmid DNA led to the same conclusion. Hybridization to the smaller plasmids of USDA 206 and USDA 206C showed the presence of nif genes on at least one of these plasmids, explaining the nif homology in the USDA 206C plasmid digests.  相似文献   

19.
Rhizobium fredii is a fast-growing rhizobium isolated from the primitive Chinese soybean cultivar Peking and from the wild soybean Glycine soja. This rhizobium harbors nif genes on 150- to 200-megadalton plasmids. By passage on acridine orange plates, we obtained a mutant of R. fredii USDA 206 cured of the 197-megadalton plasmid (USDA 206C) which carries both nif and nod genes. This strain, however, has retained its symbiotic effectiveness. Probing EcoRI digests of wild-type and cured plasmid DNA with a 2.2-kilobase nif DH fragment from Rhizobium meliloti has shown four homologous fragments in the wild-type strain (4.2, 4.9, 10, and 11 kilobases) and two fragments in the cured strain (4.2 and 10 kilobases). EcoRI digests of total DNA show four major bands of homology (4.2, 4.9, 5.8, and 13 kilobases) in both the wild-type and cured strains. The presence of major bands of homology in the total DNA not present in the plasmid DNA indicated chromosomal nif genes. Probing of HindIII digests of total and plasmid DNA led to the same conclusion. Hybridization to the smaller plasmids of USDA 206 and USDA 206C showed the presence of nif genes on at least one of these plasmids, explaining the nif homology in the USDA 206C plasmid digests.  相似文献   

20.
Forty-five Rhizobium strains nodulating sulla (Hedysarum coronarium L.), isolated from plants grown in different sites in Menorca Island and southern Spain, were examined for plasmid content and the location and organization of nif (nitrogen fixation) and nod (nodulation) sequences. A great diversity in both number and size of the plasmids was observed in this native population of strains, which could be distributed among 19 different groups according to their plasmid profiles. No correlation was found between plasmid profile and geographical origin of the strains. In each strain a single plasmid ranging from 187 to 349 megadaltons hybridized to Rhizobium meliloti nifHD and nodD DNA, and in three strains the spontaneous loss of this plasmid resulted in the loss of the nodulation capacity. In addition to the symbiotic plasmid, 18 different cryptic plasmids were identified. A characteristic cryptic plasmid of >1,000 megadaltons was present in all strains. Total DNA hybridization experiments, with nifHD and portions of nodC and nodD genes (coding for common nodulation functions) from R. meliloti as probes, demonstrated that both the sequence and organization of nif and common nod genes were highly conserved within rhizobia nodulating sulla. Evidence for reiteration of nodD sequences and for linkage of nodC to at least one copy of nodD was obtained for all the strains examined. From these results we conclude that Rhizobium strains nodulating sulla are a homogeneous group of symbiotic bacteria that are closely related to the classical fast-growing group of rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号