首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods of sampling and sections preparaction were the same as reported previously. Except that sampling was made at monthly intervals between May 20 and July 30, then at 7–14 day-intervals between July 30 and October 14, and then at monthly intervals between October 14 and March 25 in the next year. The stored starch in various tissues was stained with PAS reaction. During active period of cambium in Broussonetia papyrifera after July 30, the cell layers of immature xylem and phloem decreased progressively, and the formation of mature xylem and phloem increased rapidly. The formation of late wood started early in August, formation of xylem ceased after September 5, followed by ceasation of phloem formation about 1.5 months later. Increasing and decreasing of stored starch were closely related to the periodicity of cambial activity during the year. Starch grains decreased progressively after cambial activity was resumed in early spring until they disappeared in all the stem tissues. Then, starch accumulated progressively again after cambial activity slowed down, particularly after the ceasation of xylem formation. However, after the formation of phloem had ceased, the stored starch once again disappeared progressively until the end of December, and accumulated again. Such changes might be related to the transition of cambium activity involving two periods of dormancy.  相似文献   

2.
构树形成层的活动周期及其淀粉贮量的变化   总被引:5,自引:2,他引:5  
在构树(Broussonetia papyrifera (L.) Vent.)形成层活动周期中,每年7月末以后,未成熟的木质部和韧皮部逐渐减少,成熟的木质部和韧皮部急剧增多。8月初开始分化晚材。进入9月后木质部的形成逐渐停止,而一个半月以后才停止形成韧皮部。淀粉贮量的消长与形成层的活动周期有很强的相关关系。早春形成层恢复活动后,淀粉贮量逐渐减少直至消失。尔后,形成层活动减慢,特别是木质部分化停止后,淀粉又开始积累。当韧皮部分化也停止后,淀粉又消失,直至翌年1月才重新积累,这似乎与两个休眠期的转化有关  相似文献   

3.
The cambium of Pinus bungeana Zucc. resumed its activities in early April with cell proliferation and increase in immature xylem and phloem cells. Some mature xylem cells occurred dunng the last ten days of April. The xylem and phloem were rapidly formed after May. The late- wood was firstly formed in the beginning of June. It ceased to produce new xylem in early August, mid phloem cells in mid-September. The seasonal changes of polysaccharide grain content in the tissues of P. bungeana evidenced significant correlation with the annual cycle of cambial activity. Polysaccharide grains continued to increase before and after cambial reactivity and then decreased gradaally from June onwards after the late-wood had been firstly formed, until almost disappeared by next January, and again were gradually accumulated after March. Isoenzymic study revealed only one band of amylase after cambium reactivity, three peculiar bands after ceasing to produce xylem, and another two peculiar bands that occurred in early December. These 5 bands all disappeared after reactivity of cambium.  相似文献   

4.
4月初,白皮松(Pinus bungeana Zucc.)形成层带细胞开始增大,未成熟的木质部和韧皮部细胞增多,下旬出现成熟的木质部细胞。5月以后,木质部和韧皮部的形成速度加快,6月初进入晚材形成期。8月初停止产生木质部,9月中旬停止产生韧皮部。多糖颗粒的消长与形成层活动有较强的相关性,恢复活动前后颗粒含量持续增长,6月进入晚材形成期才持续减少,至翌年1月初完全消失,3月又重新积累,并迅速达到高峰。淀粉酶同工酶在活动期只有一条酶带,形成层停止产生木质部后出现了3条特异酶带,12月初又出现了2条特异酶带,这5条酶带都一直存在到形成层恢复活动。  相似文献   

5.
BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.  相似文献   

6.

Key message

We observed the formation of latewood tracheids with narrow diameters and thick walls and the disappearance of stored starch around the cambium on the locally heated region of stems in evergreen conifer Chamaecyparis pisifera during winter cambial dormancy.

Abstract

Wood formation is controlled by cambial cell division, which determines the quantity and quality of wood. We investigated the factors that control cambial activity and the formation of new tracheids in locally heated stems of the evergreen conifer Chamaecyparis pisifera. Electric heating tape was wrapped around one side of the stem, at breast height, of two trees in 2013 and two in 2014. Pairs of stems were locally heated in winter, and small blocks were collected from heated and non-heated regions of stems. Cambial activity and levels of stored starch around the cambium were investigated by microscopy. Cambial reactivation and xylem differentiation occurred earlier in heated than in non-heated regions. New cell plates were formed after 14–18 days of heating. After a few layers of tracheids with large diameters and thin walls had formed, cell division and cell enlargement during differentiation were inhibited. Tracheids with narrow diameters and thick walls, defining those as latewood, were formed near the cambium, and finally, four to six layers of tracheids were induced. After cambial reactivation, amounts of stored starch started to decrease and starch disappeared completely from phloem and xylem cells that were located near the cambium during the differentiation of heated regions. Our results suggest that an increase in temperature induces the conversion of stored starch to soluble sugars for continuous cambial cell division and earlywood formation. By contrast, a shortage of stored starch might be responsible for inhibition of cambial activity and induction of the formation of latewood tracheids.
  相似文献   

7.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

8.
The growth period of Salix viminalis L. (clone 683) plants near Stockholm, Sweden, (59.5°N, 18.3°E) started in April with flowering and ended in October with abscission of the shoot tips. Cell divisions in the vascular cambium started almost two months before sprouting and ceased at about the same time as the elongation growth of the shoots. Phloem cells were apparently produced before flowering, while new xylem production started at the time of flushing. Cytodifferentiation in immature xylem continued until November. Thick-walled cells with protoplasm were observed adjacent to xylem mother cells in the cambium during the winter. The number of radially arranged cells in the cambial zone increased from 3–4 during dormancy to about 18 during the mitotic maximum in July. Seasonal variation was apparent in vacuolization, wall thickness and presence of storage material in the cells. Lipid bodies and protein bodies occurred in both fusiform and ray initials, while starch was observed in ray initials, ray cells and in the phloem. In September the ultrastructure of the cambium showed anatomical features characteristic for both active and dormant cells. Dictyosomes with vesicles and rough ER were present in thick-walled cells that contained lipid bodies and starch granules. Nuclear divisions in the cambium ended in October.  相似文献   

9.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   

10.
Evert , R. F. (U. Wisconsin, Madison.) The cambium and seasonal development of the phloem in Pyrus malus. Amer. Jour. Bot. 50(2): 149–159. Illus. 1963.—The cambium in apple consists of several layers of cells at all times, and practically all cambial cells divide periclinally one or more times before undergoing differentiation. The cambial initials do not seem to be in a uniform, uniseriate layer. Judged by collections made during 2 seasons (August, 1958–October, 1960), the seasonal cycle of phloem development is as follows. Early in April, cells in the outer margin of the cambial zone begin to differentiate into sieve elements. At approximately the same time, activity (division) commences throughout the cambial zone. By the end of July or early August, sieve-element differentiation is completed. Cessation of function begins in either late September or in October with the formation of definitive callose on the sieve areas of sieve elements in the outer margin of the functional phloem. By late November, all sieve elements are devoid of contents and most of their companion cells collapsed. Phloem differentiation precedes xylem differentiation by approximately a month and a half; xylem and phloem differentiation cease almost simultaneously; and fiber-sclereid development is coincident with the period of maximal xylem differentiation.  相似文献   

11.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

12.
BACKGROUND AND AIMS The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated. METHODS: A heating experiment (23-25 degrees C) was carried out in spring, before normal reactivation of the cambium, and cooling (9-11 degrees C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees. KEY RESULTS: Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples. CONCLUSIONS: Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.  相似文献   

13.
Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.  相似文献   

14.
木材(次生木质部)是树木形成层细胞分化的产物,形成层的活动方式不仅影响木材的产量,而且影响木材的结构和性质.利用透射电子显微镜观察了生长在北京地区的毛白杨(Populus tomentosa Carr.)枝条形成层带细胞一个完整活动周期的超微结构变化.在木质部母细胞完全恢复活动之前,形成层纺锤状原始细胞的分裂和韧皮部细胞的分化已经开始.枝条上芽的展开和幼叶的生长可能决定了形成层带细胞的这种活动方式.透射电镜观察更清楚地揭示了树木形成层细胞在活动初期的分化特点.活动期形成层细胞中的大液泡在进入休眠期后逐渐分成许多小液泡分散在细胞质中.随着液泡融合逐渐消失的深色蛋白类物质又重新充满了大部分液泡.油滴和淀粉颗粒的年变化情况同液泡中的蛋白类物质基本相似.无论在活动期还是休眠期,形成层纺锤形细胞的质膜上都发现有许多可能与物质运输有关的小泡状内折.由核膜、内质网和高尔基体及其分泌小泡组成的细胞内膜系统,在形成层活动周期的不同阶段,其形态和分布明显不同,尤其在形成层细胞的恢复活动及其衍生木质部细胞次生壁的沉积过程中发挥着重要作用.整个活动周期中,形成层纺锤形细胞的径向壁都比弦向壁厚,处在休眠期的形成层带细胞,其径向壁与弦向壁的差别则更明显.形成层恢复活动时,径向壁上特别是与弦向壁相连的角隅处出现部分自溶现象.细胞壁特别是径向壁的变薄是形成层细胞恢复活动的重要特征.  相似文献   

15.
A study of seasonal activity of the cambium in Tectona grandis L. f. has shown that the activity initiates in the first week of June, reaches a peak in July and then slowly declines. The length of fusiform cambial initials undergo considerable variations during the activity and dormancy of the cambium. The initiation of cambial activity is closely associated with the opening of the dormant foliar buds in the first week of May. Cambium is more active with high numbers of immature xylem and phloem elements from July to September when the trees are with mature foliage and flowers and dormant from January to April when leaves dry and defoliation takes place. The differentiation of xylem and phloem starts simultaneously and the number of their immature elements reach the maximum in July.  相似文献   

16.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

17.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

18.
The interrelationship between phenological events, climatic factors, periodicity of cambial activity and seasonal production of xylem was examined in Dillenia indica L. (Dilleniaceae) growing in sub-tropical wet forest of Meghalaya state, India. The reactivation of cambial activity was seen in the first week of May, 15 days after sprouting of new leaves and buds. The activity of cambium and xylem production gradually declined toward December and ceased from January to April end. There was correlation between leaf fall and cambial dormancy. It was evident from the correlation and regression analysis, the relationship between cambial activity, xylem production with climatic factors, the monthly mean minimum temperature plays an important role for the cambial activity and xylem production rather than influence by rainfall and relative humidity in D. indica L. The data were discussed in the light of cambial activity, xylem production and phenological events.  相似文献   

19.
In Juniperus californica, all sieve cells of the previous season's phloem growth increment overwinter in a mature state. Initiation of cambial activity begins in early March and, by the end of March, the oldest sieve cells that overwintered lose their contents and die. By mid-April, even the youngest sieve cells of the previous season's growth increment have lost their contents. The period of greatest cambial activity begins in the last half of April and continues through May. With the slowing of cambial activity in June, callose begins to collect on the sieve areas of the first-formed sieve cells of the new increment. By July, the cambium and phloem are in a dormant state. Initiation of phloem production precedes that of the xylem by about 1 month. Production of new xylem and phloem ceases simultaneously in July.  相似文献   

20.
The dynamics of phloem growth ring formation in silver fir (Abies alba Mill.) and Norway spruce (Picea abies Karst.) at different sites in Slovenia during the droughty growing season of 2003 was studied. We also determined the timing of cambial activity, xylem and phloem formation, and counted the number of cells in the completed phloem and xylem growth rings. Light microscopy of cross-sections revealed that cambial activity started on the phloem and xylem side simultaneously at all three plots. However, prior to this, 1–2 layers of phloem derivatives near the cambium were differentiated without previous divisions. The structure of the early phloem was similar in silver fir and Norway spruce. Differences in the number of late phloem cells were found among sites. Phloem growth rings were the widest in Norway spruce growing at the lowland site. In all investigated trees, the cambium produced 5–12 times more xylem cells than phloem ones. In addition, the variability in the number of cells in the 2003 growth ring around the stem circumference of the same tree and among different trees was higher on the xylem side than on the phloem side. Phloem formation is presumably less dependent on environmental factors but is more internally driven than xylem formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号