首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
依据世界范围栝楼属植物种类的形态学、孢粉学、细胞学、系统发育研究资料,对栝楼属植物的系统演化和现代地理分布的形成进行了总结。栝楼组在栝楼属中处于原始地位,大苞组、叶苞组属于较进化类群,该属内的部分类群是在二倍体的水平上经过多倍化形成的。栝楼属在第三纪时期广布于欧洲、北美洲、亚洲、大洋洲,到第三纪晚期演化进程加快,南亚和中国西南山地逐步成为该属的起源中心与分化中心;受第四纪冰川期影响,该属在欧洲的种类逐渐消失,东亚成为该属的现代分布中心。栝楼属作为中国本地起源种,是中国植物区系中的重要组成部分。  相似文献   

2.
Grasses are widespread on every continent and are found in all terrestrial biomes. The dominance and spread of grasses and grassland ecosystems have led to significant changes in Earth′s climate, geochemistry, and biodiversity. The abundance of DNA sequence data, particularly chloroplast sequences, and advances in placing grass fossils within the family allows for a reappraisal of the family′s origins, timing, and geographic spread and the factors that have promoted diversification. We reconstructed a time-calibrated grass phylogeny and inferred ancestral areas using chloroplast DNA sequences from nearly 90% of extant grass genera. With a few notable exceptions, the phylogeny is well resolved to the subtribal level. The family began to diversify in the Early–Late Cretaceous (crown age of 98.54 Ma) on West Gondwana before the complete split between Africa and South America. Vicariance from the splitting of Gondwana may be responsible for the initial divergence in the family. However, Africa clearly served as the center of origin for much of the early diversification of the family. With this phylogenetic, temporal, and spatial framework, we review the evolution and biogeography of the family with the aim to facilitate the testing of biogeographical hypotheses about its origins, evolutionary tempo, and diversification. The current classification of the family is discussed with an extensive review of the extant diversity and distribution of species, molecular and morphological evidence supporting the current classification scheme, and the evidence informing our understanding of the biogeographical history of the family.  相似文献   

3.
4.
云南栎属植物资源及开发利用   总被引:4,自引:0,他引:4  
周元 《广西植物》2001,21(4):330-334
栎属 (Quercus L.)植物在云南约 3 5种 ,在全省分布范围广泛。国内外在现代分布、系统分类及其演化、化石历史、遗传学以及分子生物学等方面对栎属植物进行了深入的研究。栎属植物中很多树种具有很高的经济价值 ,但长期以来未能得到合理开发和利用。本文对其地理分布、林木资源、化学成分、利用现状等方面进行了论述 ;并提出了栎属植物资源的保护和未来开发利用的几种途径。  相似文献   

5.
吴芳  潘红春 《蛛形学报》2012,21(1):51-60
本文从妖面蛛总科和园蛛总科系统发生关系、园蛛总科网型不同的蜘蛛间的系统发生关系及蛛网构建行为等几个方面着重介绍了圆网蛛类系统发生及网型进化的研究进展.圆网蛛类系统发生与其网型进化有效地结合、进行综合研究将有助于圆网蛛类的起源及网型多样性的研究.  相似文献   

6.
稻属多倍体的研究历史及存在问题   总被引:1,自引:0,他引:1  
稻属Oryza隶属于禾本科Poaceae稻亚科Oryzoideae稻族Oryzeae, 包括20多个种, 其中近1/2的种类为异源多倍体植物。这些多倍体不但数量多而且涉及BC、CD、HJ和HK等多种染色体组构成, 广泛分布于热带亚洲、非洲、大洋洲和拉丁美洲。由于具有重要的经济和理论研究价值, 稻属植物一直在植物学研究中备受瞩目。相应地, 稻属多倍体植物的研究也积累了丰富的资料。本文通过回顾以往对稻属植物的研究历史, 特别关注有关多倍体的研究, 结合我们最近的研究总结了稻属多倍体分类和系统发育关系研究的最新进展, 同时对稻属多倍体研究中存在的问题及未来研究方向进行了讨论。  相似文献   

7.
The avian family Timaliidae is a species rich and morphologically diverse component of African and Asian tropical forests. The morphological diversity within the family has attracted interest from ecologists and evolutionary biologists, but systematists have long suspected that this diversity might also mislead taxonomy, and recent molecular phylogenetic work has supported this hypothesis. We produced and analyzed a data set of 6 genes and almost 300 individuals to assess the evolutionary history of the family. Although phylogenetic analysis required extensive adjustment of program settings, we ultimately produced a well-resolved phylogeny for the family. The resulting phylogeny provided strong support for major subclades within the family but extensive paraphyly of genera. Only 3 genera represented by more than 3 species were monophyletic. Biogeographic reconstruction indicated a mainland Asian origin for the family and most major clades. Colonization of Africa, Sundaland, and the Philippines occurred relatively late in the family's history and was mostly unidirectional. Several putative babbler genera, such as Robsonius, Malia, Leonardina, and Micromacronus are only distantly related to the Timaliidae.  相似文献   

8.
Bats (Order Chiroptera), the only mammals capable of powered flight and sophisticated laryngeal echolocation, represent one of the most species-rich and ubiquitous orders of mammals. However, phylogenetic relationships within this group are poorly resolved. A robust evolutionary tree of Chiroptera is essential for evaluating the phylogeny of echolocation within Chiroptera, as well as for understanding their biogeographical history. We generated 4 kb of sequence data from portions of four novel nuclear intron markers for multiple representatives of 17 of the 18 recognized extant bat families, as well as the putative bat family Miniopteridae. Three echolocation-call characters were examined by mapping them onto the combined topology: (1) high-duty cycle versus low-duty cycle, (2) high-intensity versus low-intensity call emission, and (3) oral versus nasal emission. Echolocation seems to be highly convergent, and the mapping of echolocation-call design onto our phylogeny does not appear to resolve the question of whether echolocation had a single or two origins. Fossil taxa may also provide insight into the evolution of bats; we therefore evaluate 195 morphological characters in light of our nuclear DNA phylogeny. All but 24 of the morphological characters were found to be homoplasious when mapped onto the supermatrix topology, while the remaining characters provided insufficient information to reconstruct the placement of the fossil bat taxa with respect to extant families. However, a morphological synapomorphy characterizing the Rhinolophoidea was identified and is suggestive of a separate origin of echolocation in this clade. Dispersal-Vicariance analysis together with a relaxed Bayesian clock were used to evaluate possible biogeographic scenarios that could account for the current distribution pattern of extant bat families. Africa was reconstructed as the center of origin of modern-day bat families.  相似文献   

9.
Oceanic dispersal has emerged as an important factor contributing to biogeographic patterns in numerous taxa. Chameleons are a clear example of this, as they are primarily found in Africa and Madagascar, but the age of the family is post-Gondwanan break-up. A Malagasy origin for the family has been suggested, yet this hypothesis has not been tested using modern biogeographic methods with a dated phylogeny. To examine competing hypotheses of African and Malagasy origins, we generated a dated phylogeny using between six and 13 genetic markers, for up to 174 taxa representing greater than 90 per cent of all named species. Using three different ancestral-state reconstruction methods (Bayesian and likelihood approaches), we show that the family most probably originated in Africa, with two separate oceanic dispersals to Madagascar during the Palaeocene and the Oligocene, when prevailing oceanic currents would have favoured eastward dispersal. Diversification of genus-level clades took place in the Eocene, and species-level diversification occurred primarily in the Oligocene. Plio-Pleistocene speciation is rare, resulting in a phylogeny dominated by palaeo-endemic species. We suggest that contraction and fragmentation of the Pan-African forest coupled to an increase in open habitats (savannah, grassland, heathland), since the Oligocene played a key role in diversification of this group through vicariance.  相似文献   

10.
11.
Crassulaceae is a mid-sized family of angiosperms, most species of which are herbaceous succulents, usually with 5-merous flowers and one or two whorls of stamens. Although previous phylogenetic studies revealed seven major “clades” in Crassulaceae and greatly improved our understanding of the evolutionary history of the family, relationships among major clades are still contentious. In addition, the biogeographic origin and evolution of important morphological characters delimiting infrafamilial taxa have not been subject to formal biogeographic and character evolution analyses based on a well-supported phylogeny backbone. In this study, we used plastomic data of 52 species, representing all major clades revealed in previous studies to reconstruct a robust phylogeny of Crassulaceae, based on which we unraveled the spatiotemporal framework of diversification of the family. We found that the family may originate in southern Africa and then dispersed to the Mediterranean, from there to eastern Asia, Macaronesia, and North America. The crown age of Crassulaceae was dated at ca. 63.93 million years ago, shortly after the Cretaceous–Paleogene (K-Pg) boundary. We also traced the evolution of six important morphological characters previously used to delimit infrafamilial taxa and demonstrated widespread parallel and convergent evolution of both vegetative (life form and phyllotaxis) and floral characters (number of stamen whorls, petals free or fused, and flower merism). Our results provide a robust backbone phylogeny as a foundation for further investigations, and also some important new insights into biogeography and evolution of the family Crassulaceae.  相似文献   

12.
Bochkov AV 《Parazitologiia》2004,38(2):122-138
A modern system, phylogeny, distribution and host parasite relationships of cheyletid mites (Acari: Prostigmatal Cheyletidae) is shortly discussed. According to the phylogenetic hypothesis proposed by Bochkov and Fain (2001), the family Cheyletidae includes now 15 tribes: Acaropsellini, Bakini, Cheletogenini, Cheletosomatini, Chelonotini, Cheyletiini, Cheyletiellini, Cheyletini, Cheletomorphini, Criokerontini, Metacheyletiini, Niheliini, Ornithocheyletiini, Teinocheylini and one unnamed tribe including the genera Caudacheles and Alliea. The parasitic Cheyletidae were primarily free-living predators, frequently associated with nests of vertebrates. These mites, being predators, have numerous preadaptations to the parasitic mode of life and they possess high ecological plasticity. Therefore it was quite easy for these mites to adapt to parasitism on the vertebrates. According to our phylogenetical hypothesis, the parasitism on vertebrates has arisen independently in several phylogenetic lines of the cheyletids associated with nests of vertebrates. Such transition from nest predation to true parasitism probably occurred repeatedly and at different times. The cheyletid mites are more widely represented on birds than on mammals. Possibly, it is in relation with a more early origin of parasitism in the cheyletids associated with bird nests than in the cheyletids associated with mammal nests. An independent origin of the parasitism in many different cheyletid phyletic lines, arisen significantly later than the origin of such a parasitic group as myobiid mites, is probably the main reason, which could explain the recent mosaic distribution of the Cheyletidae among the mammalian taxa. Parasitic associations between cheyletids and vertebrates are more common than the associations between these mites and the invertebrates. In the invertebrates, these associations are generally restricted to a phoresy. The zoogeographical analysis showed that this family as whole is characterised by the extremely low endemisms. The most part of the free-living cheyletid mites are associated with Holarctic region (87%) and, therefore, this family, probably, originated there.  相似文献   

13.
Treefrogs of the family Hyperoliidae are distributed in Africa, Madagascar and the Seychelles. In this study, their phylogeny was studied using sequences of fragments of the mitochondrial 16S and 12S rRNA and cytochrome b genes. The molecular data strongly confirmed monophyly of the subfamily Hyperoliinae but indicated that the genus Leptopelis (subfamily Leptopelinae) is more closely related to species of the African family Astylosternidae. The Seychellean genus Tachycnemis was the sister group of the Malagasy Heterixalus in all molecular analyses; this clade was deeply nested within the Hyperoliinae. A re-evaluation of the morphological data did not contradict the sister group relationships of these two genera. The subfamily Tachycneminae is therefore considered as junior synonym of the Hyperoliinae. In addition, the molecular analysis did not reveal justification for a subfamily Kassininae. Biogeographically, the origin of Malagasy hyperoliids may not be well explained by Mesozoic vicariance in the context of Gondwana breakup, as indicated by the low differentiation of Malagasy hyperoliids to their African and Seychellean relatives and by analysis of current distribution patterns.  相似文献   

14.
The ability to consume wood as food (xylotrophy) is unusual among animals. In terrestrial environments, termites and other xylotrophic insects are the principle wood consumers while in marine environments wood-boring bivalves fulfill this role. However, the evolutionary origin of wood feeding in bivalves has remained largely unexplored. Here we provide data indicating that xylotrophy has arisen just once in Bivalvia in a single wood-feeding bivalve lineage that subsequently diversified into distinct shallow- and deep-water branches, both of which have been broadly successful in colonizing the world’s oceans. These data also suggest that the appearance of this remarkable life habit was approximately coincident with the acquisition of bacterial endosymbionts. Here we generate a robust phylogeny for xylotrophic bivalves and related species based on sequences of small and large subunit nuclear rRNA genes. We then trace the distribution among the modern taxa of morphological characters and character states associated with xylotrophy and xylotrepesis (wood-boring) and use a parsimony-based method to infer their ancestral states. Based on these ancestral state reconstructions we propose a set of plausible hypotheses describing the evolution of symbiotic xylotrophy in Bivalvia. Within this context, we reinterpret one of the most remarkable progressions in bivalve evolution, the transformation of the “typical” myoid body plan to create a unique lineage of worm-like, tube-forming, wood-feeding clams. The well-supported phylogeny presented here is inconsistent with most taxonomic treatments for xylotrophic bivalves, indicating that the bivalve family Pholadidae and the subfamilies Teredininae and Bankiinae of the family Teredinidae are non-monophyletic, and that the principle traits used for their taxonomic diagnosis are phylogenetically misleading.  相似文献   

15.
To estimate the evolutionary history of the mustard family (Brassicaceae or Cruciferae), we sampled 113 species, representing 101 of the roughly 350 genera and 17 of the 19 tribes of the family, for the chloroplast gene ndhF. The included accessions increase the number of genera sampled over previous phylogenetic studies by four-fold. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the Shimodaira-Hasegawa test (S-H test) to compare the phylogenetic results with the most recent tribal classification for the family. The resultant phylogeny allowed a critical assessment of variations in fruit morphology and seed anatomy, upon which the current classification is based. We also used the S-H test to examine the utility of trichome branching patterns for describing monophyletic groups in the ndhF phylogeny. Our phylogenetic results indicate that 97 of 114 ingroup accessions fall into one of 21 strongly supported clades. Some of these clades can themselves be grouped into strongly to moderately supported monophyletic groups. One of these lineages is a novel grouping overlooked in previous phylogenetic studies. Results comparing 30 different scenarios of evolution by the S-H test indicate that five of 12 tribes represented by two or more genera in the study are clearly polyphyletic, although a few tribes are not sampled well enough to establish para- or polyphyly. In addition, branched trichomes likely evolved independently several times in the Brassicaceae, although malpighiaceous and stellate trichomes may each have a single origin.  相似文献   

16.
Kordis D  Gubensek F 《Gene》1999,238(1):171-178
Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestor of Colubroidea snakes has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40-50 My ago. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era.  相似文献   

17.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   

18.
Two assumptions have framed previous systematic and biogeographic studies of the family Natalidae: that it comprises a few widespread species, and that extant lineages originated in Mexico and/or Central America. This study analyzes new sequence data from the mitochondrial cytochrome b and the nuclear Rag2, to clarify species boundaries and infer relationships among extant taxa. Fixed differences in cytochrome b coincide with published morphological characters, and show that the family includes at least eight species. One newly recognized species is known to live from a single locality in Jamaica, suggesting immediate conservation measures and underscoring the urgency of taxonomic revision. Among the three genera, Chilonatalus and Natalus form a clade, to the exclusion of Nyctiellus. This phylogeny and the geographic distribution of natalids, both extant and extinct, are hardly compatible with a Middle American origin for the group. Instead, extant natalids appear to have originated in the West Indies. The threat of Caribbean hurricanes early in their evolutionary history might account for the specialized cave roosting that characterizes all natalids, even continental species.  相似文献   

19.
By analysing key morphological characters (with emphasis on shell, radula and stomach anatomy) and a partial fragment of the mitochondrial 16S rRNA gene (alignment length 860 bp), we examined patterns of diversity and differentiation of a previously overlooked radiation of Madagascan pachychilid freshwater gastropods. These analyses resulted in the discovery of three new species in addition to the two species that were already recognized. The complex nomenclatural and taxonomic implications are discussed and the finding of a viviparous reproductive mode in at least one among otherwise oviparous species is reported. Using a mitochondrial phylogeny that includes all currently accepted pachychilid genera and a strict molecular clock approach, we address the historical biogeography of the Madagascan species with respect to vicariant versus dispersalist biogeographical models. Using two alternative calibrations that were previously suggested for other gastropods, the molecular clock tree suggested that the origin of the Pachychilidae dates back to no more than 50 Mya, whereas the origin of the Madagascan lineage is estimated to date to a period between 15.6–31.5 Mya. These estimates are approximately concurrent with the dating of colonization events in a number of other Madagascan animal taxa. The pachychilid radiation on Madagascar appears not to be older than 3–5 Mya. Thus, although the global patterns of pachychilid distribution have earlier been interpreted to suggest a Gondwanan origin of the family, the present study does not support this postulate. Neither the topology of the molecular phylogeny, nor the timing of events as suggested from a molecular clock were found to be congruent with a vicariance scenario within the framework of Gondwanan fragmentation during the Mesozoic but, instead, imply overseas dispersal during the Cenozoic. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 867–894.  相似文献   

20.
跳虫系统进化的研究进展   总被引:1,自引:0,他引:1  
熊燕  栾云霞 《生命科学》2007,19(2):239-244
跳虫是弹尾纲(Collembola)的俗称,在所有六足动物中化石年代最早,因此跳虫是六足动物起源及进化研究中非常重要的类群。跳虫的起源、分类地位和系统关系等问题,对于阐明六足动物甚至节肢动物各大类群的系统关系非常关键,日益成为相关学者关注和争论的焦点。本文就跳虫形态学和分子系统学方面的研究工作进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号