首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antarctic terrestrial ecosystems experience some of the most extreme growth conditions on Earth and are characterized by extreme aridity and subzero temperatures. Antarctic vegetation is therefore at the physiological limits of survival and, as a consequence, even slight changes to growth conditions are likely to have a large impact, rendering Antarctic terrestrial communities sensitive to climate change. Climate change is predicted to affect the high‐latitude regions first and most severely. In recent decades, the Antarctic has undergone significant environmental change, including the largest increases in ultraviolet‐B (UV‐B; 290–320 nm) radiation levels in the world and, in the maritime region at least, significant temperature increases. This review describes the current evidence for environmental change in Antarctica, and the impacts of this change on the terrestrial vegetation. This is largely restricted to cryptogams, such as bryophytes, lichens and algae; only two vascular plant species occur in the Antarctic, both restricted to the maritime region. We review the range of ecological and physiological consequences of increasing UV‐B radiation levels, and of changes in temperature, water relations and nutrient availability. It is clear that climate change is already affecting the Antarctic terrestrial vegetation, and significant impacts are likely to continue in the future. We conclude that, in order to gain a better understanding of the complex dynamics of this important system, there is a need for more manipulative, long‐term field experiments designed to address the impacts of changes in multiple abiotic factors on the Antarctic flora.  相似文献   

2.
Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vegetation is mainly cryptogamic. Cryptogams are poikilohydric and are only metabolically and photosynthetically active when hydrated. Activity patterns of the main life forms present, bryophytes (10 species, ecto- and endohydric), lichens (5 species) and phanerogams (2 species), were monitored for 21 days using chlorophyll a fluorescence as an indicator of metabolic activity and, therefore, of water regime at a mesic (hydration by meltwater) and a xeric (hydration by precipitation) site on Léonie Island/West Antarctic Peninsula (67°36′S). Length of activity depended mainly on site and form of hydration. Plants at the mesic site that were hydrated by meltwater were active for long periods, up to 100 % of the measurement period, whilst activity was much shorter at the xeric site where hydration was entirely by precipitation. There were also differences due to life form, with phanerogams and mesic bryophytes being most active and lichens generally much less so. The length of the active period for lichens was longer than in continental Antarctica but shorter than in the more northern Antarctic Peninsula. Light intensity when hydrated was positively related to the length of the active period. High activity species were strongly coupled to the incident light whilst low activity species were active under lower light levels and essentially uncoupled from incident light. Temperatures were little different between sites and also almost identical to temperatures, when active, for lichens in continental and peninsular Antarctica. Gradients in vegetation cover and growth rates across Antarctica are, therefore, not likely to be due to differences in temperature but more likely to the length of the hydrated (active) period. The strong effect on activity of the mode of hydration and the life form, plus the uncoupling from incident light for less active species, all make modelling of vegetation change with climate a more difficult exercise.  相似文献   

3.
Development of vegetation communities in areas of Antarctica without permanent ice cover emphasizes the need for effective remote sensing techniques for proper monitoring of local environmental changes. Detection and mapping of vegetation by image classification remains limited in the Antarctic environment due to the complexity of its surface cover, and the spatial heterogeneity and spectral homogeneity of cryptogamic vegetation. As ultra-high resolution aerial images allow a comprehensive analysis of vegetation, this study aims to identify different types of vegetation cover (i.e., algae, mosses, and lichens) in an ice-free area of  Hope Bay, on the northern tip of the Antarctic Peninsula. Using the geographic object-based image analysis (GEOBIA) approach, remote sensing data sets are tested in the random forest classifier in order to distinguish vegetation classes within vegetated areas. Because species of algae, mosses, and lichens may have similar spectral characteristics, subclasses are established. The results show that when only the mean values of green, red, and NIR bands are considered, the subclasses have low separability. Variations in accuracy and visual changes are identified according to the set of features used in the classification. Accuracy improves when multilayer information is used. A combination of spectral and morphometric products and by-products provides the best result for the detection and delineation of different types of vegetation, with an overall accuracy of 0.966 and a Kappa coefficient of 0.946. The method allowed for the identification of units primarily composed of algae, mosses, and lichens as well as differences in communities. This study demonstrates that ultra-high spatial resolution data can provide the necessary properties for the classification of vegetation in Maritime Antarctica, even in images obtained by sensors with low spectral resolution.  相似文献   

4.
Bryophyte interactions with other plants   总被引:14,自引:0,他引:14  
Bryophytes live in microhabitats determined by the physical environment, usually modified by the vascular plant vegetation, and seemingly in 'ecological isolation' from other plants.
However, bryophytes are involved in a variety of competitive, parasitic, symbiotic, mutualistic and as yet unspecifiable interactions with vascular plants, algae, fungi, lichens, cyanobactcria and autotrophic and heterotrophic bacteria. In only very few cases have these interactions been analysed functionally. Yet, such information may be essential for a better understanding of (1) such aspects of bryophyte ecology as mineral nutrition, carbon economy, herbivory, and growth and development of the gametophyte, and (2) the ecological role of bryophytes in terrestrial ecosystems.  相似文献   

5.
BACKGROUND: Recent decades have seen a major surge in the study of interspecific variation in functional traits in comparative plant ecology, as a tool to understanding and predicting ecosystem functions and their responses to environmental change. However, this research has been biased almost exclusively towards vascular plants. Very little is known about the role and applicability of functional traits of non-vascular cryptogams, particularly bryophytes and lichens, with respect to biogeochemical cycling. Yet these organisms are paramount determinants of biogeochemistry in several biomes, particularly cold biomes and tropical rainforests, where they: (1) contribute substantially to above-ground biomass (lichens, bryophytes); (2) host nitrogen-fixing bacteria, providing major soil N input (lichens, bryophytes); (3) control soil chemistry and nutrition through the accumulation of recalcitrant polyphenols (bryophytes) and through their control over soil and vegetation hydrology and temperatures; (4) both promote erosion (rock weathering by lichens) and prevent it (biological crusts in deserts); (5) provide a staple food to mammals such as reindeer (lichens) and arthropodes, with important feedbacks to soils and biota; and (6) both facilitate and compete with vascular plants. APPROACH: Here we review current knowledge about interspecific variation in cryptogam traits with respect to biogeochemical cycling and discuss to what extent traits and measuring protocols needed for bryophytes and lichens correspond with those applied to vascular plants. We also propose and discuss several new or recently introduced traits that may help us understand and predict the control of cryptogams over several aspects of the biogeochemistry of ecosystems. CONCLUSIONS: Whilst many methodological challenges lie ahead, comparative cryptogam ecology has the potential to meet some of the important challenges of understanding and predicting the biogeochemical and climate consequences of large-scale environmental changes driving shifts in the cryptogam components of vegetation composition.  相似文献   

6.
The recent inclusion of communities of planktonic algae and microbial crusts into the system of European vegetation types is critically discussed. It is argued that formal vegetation classification should be limited to plant taxa represented by macroscopic individuals within a plot, including all vascular plants, bryophytes, lichens, charophyta and macrophytic chlorophyta, rhodophyta or phaeophyta. In the interest of comparability and methodological stringency, all microscopic algae and all prokaryotes, including cyanobacteria, and the habitats dominated by such microorganisms (e.g. plankton, biofilms and crusts), should be excluded from vegetation classification.  相似文献   

7.
The understorey vegetation in a lichen–Scots pine forest was monitored during 20 years before and after clear-felling. Plots with and without logging residues were compared concerning the general pattern of the vegetation dynamics and changes in species composition, dominance, richness, evenness and diversity. The succession of both treatments had a clear principal component analysis (PCA) pattern of a 'stepwise arch-shaped diverging' trend mainly driven by 'pioneer' lichens, 'reindeer' lichens and Calluna vulgaris. The difference between the residue treatments was significant regarding succession of vascular plants, bryophytes and 'reindeer' lichens. The nitrogen indicators Epilobium angustifolium and Deschampsia flexuosa were favoured on plots with logging residues.  相似文献   

8.
Biological soil crusts in Antarctica: Life between ice and rocks Despite its adverse environmental conditions and geographical isolation, Antarctica is home to a rich vegetation of lichens, mosses, algae, fungi and bacteria. In the milder areas of the maritime and continental Antarctic, these pioneer species form widely visible biological soil crusts. In drier areas, they occur mainly within the outer rock and upper soil layers. Among the ecological adaptations that enable these species to survive Antarctic conditions, a good dehydration tolerance stands out. Almost nothing is known about the genetic diversity of most species. While some species probably originated in Antarctica, others are relatively late settlers.  相似文献   

9.
Plant communities were studied on Barton Peninsula around King Sejong Station on King George Island, maritime Antarctic. The objective of this study was to document the occurrence and distribution of plant assemblages to provide the bases for monitoring the effects of environmental changes and human impact on the vegetation of this area. Approximately 47% of the investigated area was covered by vegetation. Crustose lichens showed the highest mean cover (21%) among vegetation components. The total mean cover of the four dominant taxa, together with the other three major subdominant components, i.e., Usnea spp., Andreaea spp. and Sanionia georgico-uncinata, was 78.2% of the total cover of all the species. Lichen cover and species diversity increased with altitude and the time of exposure from snow. Lichens contributed substantially more to the increased species density and diversity than did bryophytes. Ten plant communities were recognized within the study area. All of them belong to the Antarctic cryptogam tundra formation; they were grouped into four subformations: fruticose lichen and moss cushion subformation, crustose lichen subformation, moss carpet subformation and moss hummock subformation. The moss turf subformation was not found on this region. The Antarctic herb tundra formation was also not found; however, the populations of both Antarctic vascular plants have rapidly expanded around Barton Peninsula in recent years, which may allow development of the Antarctic herb tundra formation in the future.  相似文献   

10.
Polar deserts are not devoid of life despite the extreme low temperature and scarcity of water. Recently, patterned stone fields--caused by periglacial activity--have been surveyed in the Arctic and Antarctic. It was found that the productivity of the cyanobacteria and algae (hypoliths) that colonise the underside of the stones is strongly related to the pattern of the stones. The hypolith assemblages were in some cases as productive as lichens, bryophytes and plants that resided nearby.  相似文献   

11.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

12.
Climate change is affecting the composition and functioning of ecosystems across the globe. Mountain ecosystems are particularly sensitive to climate warming since their biota is generally limited by low temperatures. Cryptogams such as lichens and bryophytes are important for the biodiversity and functioning of these ecosystems, but have not often been incorporated in vegetation resurvey studies. Hence, we lack a good understanding of how vascular plants, lichens and bryophytes respond interactively to climate warming in alpine communities. Here we quantified long-term changes in species richness, cover, composition and thermophilization (i.e. the increasing dominance of warm-adapted species) of vascular plants, lichens and bryophytes on four summits at Dovrefjell, Norway. These summits are situated along an elevational gradient from the low alpine to high alpine zone and were surveyed for all species in 2001, 2008 and 2015. During the 15-year period, a decline in lichen richness and increase in bryophyte richness was detected, whereas no change in vascular plant richness was found. Dwarf-shrub abundance progressively increased at the expense of lichens, and thermophilization was most pronounced for vascular plants, but occurred only on the lowest summits and northern aspects. Lichens showed less thermophilization and, for the bryophytes, no significant thermophilization was found. Although recent climate change may have primarily caused the observed changes in vegetation, combined effects with non-climatic factors (e.g. grazing and trampling) are likely important as well. At a larger scale, alpine vegetation shifts could have a profound impact on biosphere functioning with feedbacks to the global climate.  相似文献   

13.
Abstract

This study proposes a bioclimatic characterization and a new biogeographic division for the Antarctic territories up to the province level following the criteria and models of Rivas-Martínez et al. The Antarctic Kingdom comprises the continent of Antarctica, the surrounding ice-covered Antarctic islands, and the associated cold oceanic islands and archipelagos. It has two biogeographic regions: the Antarctic Region and the Subantarctic Insular Region. The Antarctic Region includes the entire pergelid Antarctic continent and the surrounding islands and archipelagos, and is characterized by upper suprapolar hyperoceanic and oceanic or Polar pergelid bioclimates on the coasts. The region has been divided into three pr6ovinces: Maritime Antarctica, West Antarctica and East Antarctica. The Subantarctic Insular Region comprises the circumantarctic islands and archipelagos that are widespread at the southern tip of the planet’s most important oceans, mostly in the subtemperate latitudinal zone inside or not far from the Antarctic Convergence. Bioclimatically, all insular subantarctic territories (excluding the South-American Tierra de Fuego, Terra Magellanica and large islands) are characterized by thermo-suprapolar and semipolar antarctic hyperoceanic bioclimates on the coasts. Four provinces – Falklandian-South Georgian, Kerguelenian, Macquarian and Aucklandian-Campbellian – have been recognized in this region. All these units are characterized by floristic bioindicators.  相似文献   

14.
Antarctica is considered to be one of the least polluted regions on earth, and therefore, it is important to survey and control the level of contamination. Antarctic vegetation is very sparse and is essentially restricted to seashore oases and nunataks. Therefore, any data concerning metal levels in plants and lichens are of crucial value for this area. Our first goal was to determine metal concentrations in two higher plants and the most dominant species of mosses and lichens collected in 1988. We then compared the results of our survey with recent studies employing similar methodology. In our study, Cr, Cu, Fe, Ni, Pb, V, and Zn concentrations in mosses, C. quitensis and D. antarctica were also higher than typical values for mosses and vascular plants from unpolluted areas indicating anthropogenic influence. Mosses were determined to be better bioindicators of metals than lichens. Hg concentrations in mosses were significantly higher than those in shoots of C. quitensis and D. antarctica. Increases in Cr, Pb, and V concentrations over time were observed in moss when concentrations from samples collected in 1988 were compared with more recent data from other studies. Our results for King George Island may apply at least to all the maritime Antarctic where climate and plant communities are similar.  相似文献   

15.
Lichens form an important part of the biodiversity in terrestrial ecosystems of Antarctica where they represent the dominant vegetation. Previous studies on the genetic diversity of photobionts of lichens have indicated that clade S Trebouxia photobionts are the most widespread in continental Antarctica, predominantly in macrolichens. For the first time, a comparative study of the physiology of a variety of isolated Antarctic lichen photobionts (genus Trebouxia) was performed. Photosynthetic activity was examined by chlorophyll a fluorescence and correlated with freezing and desiccation under laboratory conditions and photosynthetic pigments were quantified in response to desiccation. Data were obtained from photobionts collected from the Antarctic regions of North Victoria Land, Coal Nunatak and Rothera Point, as well as from a European site (Gotland, Sweden). While the isolated algae reacted individually to stress treatments, they were highly susceptible to desiccation stress but could rapidly recover from freezing. Photobiont-specific physiological adaptations are considered to explain the dominance of clade S Trebouxia photobionts.  相似文献   

16.
Productivity has long been argued to be a major driver of species richness patterns. In the present study we test alternative productivity–diversity hypotheses using vegetation data from the vast Eurasian tundra. The productivity–species pool hypothesis predicts positive relationships at both fine and coarse grain sizes, whereas the productivity–interaction hypothesis predicts unimodal patterns at fine grain size, and monotonic positive patterns at coarse grain size. We furthermore expect to find flatter positive (productivity–species pool hypothesis) or more strongly negative (productivity–interaction hypothesis) relationships for lichens and bryophytes than for vascular plants, because as a group, lichens and bryophytes are better adapted to extreme arctic conditions and more vulnerable to competition for light than the taller‐growing vascular plants. The normalised difference vegetation index (NDVI) was used as a proxy of productivity. The generally unimodal productivity–diversity patterns were most consistent with the productivity–interaction hypothesis. There was a general trend of decreasing species richness from moderately to maximally productive tundra, in agreement with an increasing importance of competitive interactions. High richness of vascular plants and lichens occurred in moderately low productive tundra areas, whereas that of bryophytes occurred in the least productive tundra habitats covered by this study. The fine and coarse grain richness trends were surprisingly uniform and no variation in beta diversity along the productivity gradient was seen for vascular plants or bryophytes. However, lichen beta diversity varied along the productivity gradient, probably reflecting their sensitivity to habitat conditions and biotic interactions. Overall, the results show evidence that productivity–diversity gradients exist in tundra and that these appear to be largely driven by competitive interactions. Our results also imply that climate warming‐driven increases in productivity will strongly affect arctic plant diversity patterns.  相似文献   

17.
Oliver  Melvin J.  Velten  Jeff  Wood  Andrew J. 《Plant Ecology》2000,151(1):73-84
The development of a complete understanding of how plants interact with the environment at the cellular level is a crucial step in advancing our ability to unravel the complexities of plant ecology particularly with regard to the role that many of the less complex plants (i.e., algae, lichens, and bryophytes) play in plant communities and in establishing areas for colonization by their more complex brothers. One of the main barriers to the advancement of this area of plant biology has been the paucity of simple and appropriate experimental models that would enable the researcher to biochemically and genetically dissect the response of less complex plants to environmental stress. A number of bryophytes model systems have been developed and they have been powerful experimental tools for the elucidation of complex biological processes in plants. Recently there has been a resurgent interest in bryophytes as models systems due to the discovery and development of homologous recombination technologies in the moss Physcomitrella patens (Hedw.) Brach & Schimp. In this report we introduce the desiccation-tolerant moss Tortula ruralis (Hedw.) Gaert., Meyer, and Scherb, as a model for stress tolerance mechanisms that offers a great deal of promise for advancing our efforts to understand how plants respond to and survive the severest of stressful environments. T. ruralis, a species native to Northern and Western North America, has been the most intensely studied of all bryophytes with respect to its physiological, biochemical, and cellular responses, to the severest of water stresses, desiccation. It is our hope that the research conducted using this bryophyte will lay the foundationfor not only the ecology of bryophytes and other less complex plants but also for the role of desiccation-tolerance in the evolution of land plants and the determination of mechanisms by which plant cells can withstand environmental insults. We will focus the discussion on the research we and others have conducted in an effort to understand the ability of T. ruralis to withstand the complete loss of free water from the protoplasm of its cells.  相似文献   

18.
Global temperature rise is suggested to be greater and more rapid in polar regions. There has been a clear temperature rise of 0.056 °C y−1 in the Antarctic Peninsula and this has led to changes in higher plant extent and range. In the more extreme environments of the main continent the vegetation is scattered and composed of lichens and mosses. There is interest in the possible effects of global climate change on these communities acting through changes in temperature and precipitation. Lichens have been extensively used to date the substrates on which they are growing using the techniques of lichenometry. The slow growth and longevity of lichens particularly suites them for this use. We present evidence that there appears to be a substantial (two orders of magnitude) cline in lichen growth rate from the warmer, wetter and more productive Peninsula to the cold Dry Valleys at 77°S latitude. The differences in growth rate reflect the precipitation and temperature regimes at the different sites. The large range in growth rates coupled with the simplicity of measuring lichen growth using modern techniques suggests that this could be an excellent tool for the detection of climate change in continental Antarctica.  相似文献   

19.
Abstract

Italy is among the European countries with the greatest plant diversity due to both a great environmental heterogeneity and a long history of man–environment interactions. Trait-based approaches to ecological studies have developed greatly over recent decades worldwide, although several issues concerning the relationships between plant functional traits and the environment still lack sufficient empirical evaluation. To draw insights on the association between plant functional traits and direct and indirect human and natural pressures on the environmental drivers, this article summarizes the existing knowledge on this topic by reviewing the results of studies performed in Italy adopting a functional trait approach on vascular plants, bryophytes and lichens. Although we recorded trait measurements for 1418 taxa, our review highlighted some major gaps in plant traits knowledge: Mediterranean ecosystems are poorly represented; traits related to belowground organs are still overlooked; traits measurements for bryophytes and lichens are lacking. Finally, intraspecific variation has been little studied at community level so far. We conclude by highlighting the need for approaches evaluating trait–environment relationship at large spatial and temporal scales and the need of a more effective contribution to online databases to tie more firmly Italian researchers to international scientific networks on plant traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号