首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phosphate buffer on protective enzyme system was different as the way of treatment and wheat (Triticum aestivum L. ) species. Normally superoxide dismutase (SOD) and peroxidase (POD) activity increased markedly. The former decreased with the increase of SO2 fumigation dosage but it was higher than control and producted new isoenzyme pedigree. The latter increased according to SO2 fumigation and showed relative gain effect with phosphate buffer the isoenzyme pedigree increased markedly. The change of protective enzyme system of scavenging free radicals was possible one cause that phosphate buffer eased SO2 insult of wheat seedlings.  相似文献   

2.
磷酸缓冲液对小麦苗保护酶系的影响及与SO2污染的关系   总被引:4,自引:0,他引:4  
磷酸缓冲液对保护酶系的影响因处理方式和小麦 (Triticum aestivum L.)品种而异。一般是 SOD和 POD活性显著增强 ,前者随 SO2 熏气剂量的增加而降低 ,但较对照为高 ,并有新同工酶谱产生 ;后者随 SO2 熏气剂量的增加而增高 ,并与磷酸缓冲液呈交互促进效应 ,同工酶谱显著增强。作为清除自由基保护酶系的变化 ,可能是磷酸缓冲液减轻小麦苗 SO2 伤害的原因之一。  相似文献   

3.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

4.
Toxoplasma gondii tachyzoites were quiescent in mouse peritoneal fluid or in K2SO4 buffer at pH 8.2. They became consistently motile when K+ was replaced by other monovalent or divalent cations at a constant pH (pH = 8.2). They also became motile when Cl- was substituted for SO4(2-). Nitrate or SCN-, can also be substituted for Cl- to a certain extent. Tachyzoites showed independent movement for more than 15 min in KCl, and for about 5 min in the other buffers at pH 8.2 after which they were exhausted and stopped. These tachyzoites could not then be further stimulated to motility by renewal of the suspension buffer. Infection of monolayer cells was demonstrated only with parasites which were motile during inoculation. The highest infectivity was thus obtained either with freshly collected tachyzoites or with those preincubated in K2SO4 buffer for 30 min at 37 degrees C at alkaline pH and thus not yet exhausted for motility. Approximately 34 to 38% of these latter organisms were seen to enter cells when they were inoculated into cultures immediately after being resuspended in MEM for 30 min at 37 degrees C. Conversely, those whose motility had been exhausted by the preincubation in buffers other than K2SO4, pH 8.2 could not enter monolayer cells. Additionally, parasites were unable to enter cells when inoculated into cultures in K2SO4 buffer at alkaline pH; instead they remained quiescent on the surface of the monolayer cells, suggesting that Toxoplasma enters the host cells by active invasion.  相似文献   

5.
Washed cells of the cadmium-sensitive Staphylococcus aureus 17810S accumulated 109Cd under anaerobic conditions via the Mn2+ porter down delta psi in 1 or 100 mM phosphate buffer, pH 7; in washed cells of the cadmium-resistant S. aureus 17810R 109Cd accumulation was highly reduced. Nigericin did not stimulate anaerobic Cd2+ accumulation by strain 17810R in 100 mM phosphate buffer, suggesting that delta psi could energize Cd2+ efflux. In 1 mM phosphate buffer nigericin restored Cd2+ accumulation via the Mn2+ porter down delta psi in strain 17810R, indicating involvement of delta pH in Cd2+ extrusion. Increase of phosphate buffer concentration from 1 to 100 mM and addition of energy source at steady-state caused delta psi-dependent Cd2+ efflux from the nigericin-pretreated cells of strain 17810R. This suggests that the Cd2+ efflux system in S. aureus may require energy of both ATP and delta mu H+.  相似文献   

6.
(Na+ + K+)-ATPase activity of a dog kidney enzyme preparation was markedly inhibited by 10-30% (v/v) dimethyl sulfoxide (Me2SO) and ethylene glycol (Et(OH)2); moreover, Me2SO produced a pattern of uncompetitive inhibition toward ATP. However, K+-nitrophenylphosphatase activity was stimulated by 10-20% Me2SO and Et(OH)2 but was inhibited by 30-50%. Me2SO decreased the Km for this substrate but had little effect on the Vmax below 30% (at which concentration Vmax was then reduced). Me2SO also reduced the Ki for Pi and acetyl phosphate as competitors toward nitrophenyl phosphate but increased the Ki for ATP, CTP and 2-O-methylfluorescein phosphate as competitors. Me2SO inhibited K+-acetylphosphatase activity, although it also reduced the Km for that substrate. Finally, Me2SO increased the rate of enzyme inactivation by fluoride and beryllium. These observations are interpreted in terms of the E1P to E2P transition of the reaction sequence being associated with an increased hydrophobicity of the active site, and of Me2SO mimicking such effects by decreasing water activity: (i) primarily to stabilize the covalent E2P intermediate, through differential solvation of reactants and products, and thereby inhibiting the (Na+ + K+)-ATPase reaction and acting as a dead-end inhibitor to produce the pattern of uncompetitive inhibition; inhibiting the K+-acetylphosphatase reaction that also passes through an E2P intermediate; but not inhibiting (at lower Me2SO concentrations) the K+-nitrophenylphosphatase reaction that does not pass through such an intermediate; and (ii) secondarily to favor partitioning of Pi and non-nucleotide phosphates into the hydrophobic active site, thereby decreasing the Km for nitrophenyl phosphate and acetyl phosphate, the Ki for Pi and acetyl phosphate in the K+-nitrophenylphosphatase reaction, accelerating inactivation by fluoride and beryllium acting as phosphate analogs, and, at higher concentrations, inhibiting the K+-nitrophenylphosphatase reaction by stabilizing the non-covalent E2.P intermediate of that reaction. In addition, Me2SO may decrease binding at the adenine pocket of the low-affinity substrate site, represented as an increased Ki for ATP, CTP and 3-O-methylfluorescein phosphate.  相似文献   

7.
The K+/H+ antiporter of a marine bacterium, Vibrio alginolyticus, is strongly dependent upon the cytoplasmic pH and functions only at an internal pH above 7.7. In alkaline buffer with an outwardly directed chemical gradient of K+ (delta pK), the internal pH was maintained at about 7.7. Addition of N-ethylmaleimide (NEM) released cellular K+ and acidified the cytosol below pH 7.7. The NEM effect was reversed by the addition of 2-mercaptoethanol: K+ efflux ceased, and the internal pH returned to about 7.7. In acidic buffer, the internal pH was also regulated at about 7.6 even in the absence of delta pK. Following addition of NEM, the internal pH decreased below 7.6, dissipating delta pH. These results suggest that NEM desensitizes the pH-dependence of the K+/H+ antiporter, allowing the antiporter to function at an internal pH below 7.7.  相似文献   

8.
The addition of polysorbate 20 (T20) is required to achieve “sink” conditions during a dissolution test for tablets with candesartan cilexetil (CC). Polysorbate 20 (0.35%–0.7% w/w) added to 0.05 mol/L of phosphate buffer pH 6.5 dramatically increased the apparent solubility of the drug from 0.8 μg/ml even to 353 μg/ml, while its effect in lower pH or in water was much smaller (20 μg/ml in pH 4.5). The increased concentration of phosphate salts (0.2 mol/l) at pH 6.5 in the presence of 0.7% of polysorbate 20, resulted in further increase of candesartan cilexetil solubility to 620 μg/ml. The change of pH from 1.2 to 7.4 resulted in a 1.5-fold increase of the activation energy and, depending on temperature, 8–14-fold decrease of the degradation rate. When polysorbate 20 increased the activation energy 2-fold, independent of pH, it protected candesartan cilexetil from degradation; however, this effect was temperature dependent and was very small at 310 K—the degradation rate in pH 6.5 decreased by 13% only. It was calculated that in the phosphate buffer pH 6.5 with polysorbate, one can expect during 24 h the degradation at the level of 9.3%, thus a flow-through dissolution apparatus was recommended for testing prolonged release dosage forms.  相似文献   

9.
The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.  相似文献   

10.
BACKGROUND/AIMS: The erythrocyte is a cell exposed to a high level of oxygen pressure and to oxidative chemical agents. This stress involves SH-groups oxidation, cell shrinkage by activation of K-Cl co-transport (KCC) and elevation of the band 3 tyrosine phosphorylation level. The aim of our study was to test whether oxidative stress could influence band 3-mediated anion transport in human red blood cells. METHODS: To evaluate this hypothesis, normal and pathological (glucose 6 phosphate dehydrogenase (G6PDH) defficient) erythrocytes were treated with known sulphydryl-blocking or thiol-oxidizing agents, such as N-ethylmaleimide (NEM), azodicarboxylic acid bis[dimethylamide] (diamide), orthovanadate, Mg2+ and tested for sulphate (SO4-) uptake, K+ efflux, G6PDH activity and glutathione (GSH) concentration. RESULTS: In normal red blood cells, the rate constants of SO4- uptake decreased by about 28 % when cells were incubated with NEM, diamide and orthovanadate. In G6PDH-deficient red blood cells, in which oxidative stress occurs naturally, the rate constant of sulphate uptake was decreased by about 40% that of normal red cells. Addition of oxidizing and phosphatase inhibitor agents to pathological erythrocytes further decreased anion transport. In contrast, G6PDH activity was increased under oxidative stress in normal as well as in pathological cells and was lower in the presence of exogenous Mg2+ in parallel to a significant increase in sulphate transport. In both cells, the oxidizing agents increased K+ efflux with depletion of GSH. CONCLUSION: The data are discussed in light of the possible opposite effects exerted by oxidative agents and Mg2+ on KCC and on the protein tyrosine kinase (PTK)-protein tyrosine phosphatase (PTP) equilibrium. The decreased sulphate uptake observed in the experimental and pathological conditions could be due to band 3 SH-groups oxidation or to oxidative stress-induced K-Cl symport-mediated cell shrinkage with concomitant band 3 tyrosine phosphorylation.  相似文献   

11.
A study of maturation events in jackbeans (Canavalia ensiformis).   总被引:3,自引:1,他引:2       下载免费PDF全文
Changes in cell volume and 42K+ efflux associated with concentrative alanine uptake were studied in isolated rat hepatocytes suspended in Krebs-Ringer bicarbonate buffer. After addition of 10 mM-alanine, cellular water volume increased by 15% and the rate constant of 42K+ efflux by 250%. Alanine-induced 42K+ efflux was abolished by quinine and was strongly decreased when the cell-volume increase was counteracted by sucrose. The results suggest that K+ efflux during alanine uptake is implicated in a volume-regulatory response.  相似文献   

12.
小麦胆色素原脱氨酶的纯化及部分性质研究   总被引:1,自引:0,他引:1  
生物中四吡咯化合物合成的共同途径是由δ-氨基酮戊酸(δ-aminolevulinicacid,ALA)在δ-氨基酮戊酸脱水酶(δ-aminolevulinatedehydratase,ALAD)作用下合成胆色素原(porpho-bilinogen,P...  相似文献   

13.
The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o. Addition of 10 mM Ko to tartrate i,o ghosts, with or without Cli,o, resulted in full activation of Na/K exchange and the pump's electrogenicity. Although it can be concluded that Na efflux in the uncoupled mode occurs by means of a cotransport with cellular anions, the molecular basis for this change in the internal charge structure of the pump and its change in ion selectivity is at present unknown.  相似文献   

14.
This study is concerned with Na/K pump-mediated phosphate efflux that occurs during uncoupled Na efflux in human red blood cells. Uncoupled Na efflux is known to be a ouabain-sensitive mode of the Na/K pump that occurs in the absence of external Nao and Ko. Because this efflux (measured with 22Na) is also inhibited by 5 mM Nao, the efflux can be separated into a Nao-sensitive and a Nao-insensitive component. Previous work established that the Nao-sensitive efflux is actually comprised of an electroneutral coefflux of Na with cellular anions, such as SO4 (as 35SO4). The present work focuses on the Nao-insensitive component in which the principal finding is that orthophosphate (P(i)) is coeffluxed with Na in a ouabain-sensitive manner. This P(i) efflux can be seen to occur, in the absence of Ko, in both DIDS-treated intact cells and resealed red cell ghosts. This efflux of P(i) was shown to be derived directly from the pump's substrate, ATP, by the use of resealed ghosts made to contain both ATP and P(i) in which either the ATP or the P(i) were labeled with, respectively, [gamma-32P]ATP or [32P]H3PO4. (These resealed ghosts also contained Na, Mg, P(i), SO4, Ap5A, as well as an arginine kinase/creatine kinase nucleotide regenerating system for the control of ATP and ADP concentrations, and were suspended usually in (NMG)2SO4 at pH 7.4.) It was found that 32P was only coeffluxed with Na when the 32P was contained in [gamma-32P]ATP and not in [32P]H3PO4. This result implies that the 32P that is released comes from ATP via the pump's phosphointermediate (EP) without commingling with the cellular pool of P(i). Ko (as K2SO4) inhibits this 32P efflux as well as the Nao-sensitive 35SO4 efflux, with a K0.5 of 0.3-0.4 mM. The K0.5 for inhibition of P(i) efflux by Ko is not influenced by Nao, nor can Nao act as a congenor for Ko in any of the flux reactions involving Ko. The stoichiometry of Na to SO4 and Na to P(i) efflux is approximately 2:1 under circumstances where the stoichiometry of Na effluxed to ATP utilized is 3:1. From these and other results reported, it is suggested that there are two types of uncoupled Na efflux that differ from each other on the basis of their sensitivity to Nao, the source (cellular vs substrate) and kind of anion (SO4 vs P(i)) transported.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
以聚乙烯醇-海藻酸钠复合材料为载体,Ca(NO3)2为交联剂对氧化亚铁硫杆菌进行包埋固定化。该固定化细胞的连续培养技术可以用于处理H2S、SO2,为了减少减少固定化细胞培养过程中带来许多不利效应的黄铁矾沉淀 (NH4Fe3(SO4)2(OH)6),采取了改变初始pH值和目前普遍采用的9K培养基中的(NH4)2SO4浓度,K2HPO4浓度三种方法。结果显示:在三种方法中,降低(NH4)2SO4浓度是比较可行的一种方法,当(NH4)2SO4从3.0 g/L降低到0.5g/L,Fe2+氧化速率几乎没有受到影响,沉淀形成速率却减少了45%。在固定化细胞连续运行时,降低9K培养基中(NH4)2SO4的含量,当稀释率为0.4 h-1,运行时间为96 h,Fe2+氧化速率高达3.75 g/L.H,结果显示反应柱内沉淀明显减少,同时Fe2+氧化速率并没有明显变化。  相似文献   

16.
The effect of bivalent cations on phosphate uptake by Saccharomyces cerevisiae was investigated. Phosphate uptake via the Na+-dependent transport system at pH 7.2 is stimulated by bivalent cations. The apparent affinity of phosphate for the transport mechanism is increased, but the apparent affinity for Na+ is decreased. Uptake of phosphate via the Na+-independent transport system is accompanied by a net proton influx of 2H+ and an efflux of 1 K+ for each phosphate ion taken up. At pH 4.5 phosphate uptake via the Na+-independent system is stimulated by bivalent cations, whereas at pH 7.2 uptake is inhibited. The effect of bivalent cations on phosphate uptake can be ascribed to a decrease in the surface potential.  相似文献   

17.
The effects of 2 molal Na2SO4 at neutral pH on hydrophobic and electrostatic interactions between amphipathic alpha-helices were investigated by circular dichroism spectroscopy. The amphipathic peptides that were studied included LEK (acetyl-LEELKKKLEELKKKLEEL-NH2) and LEE (acetyl-LEELEEELEELEEELEEL-NH2). In phosphate buffer at neutral pH, only LEK adopted a predominantly alpha-helical conformation, attributable to glu-lys+ interactions where a major contribution is evidently a hydrogen bond (Biochemistry 32: 9668-9676). Despite the presence of lys+ in the e and g' positions of the abcdefg heptad repeat, LEK exhibited mean-residue ellipticities at 222 nm ([theta]222) which were dependent on peptide concentration, indicating the presence of a coiled coil. In the presence of 2 molal Na2SO4 at 25-75 degrees C, the helical content of LEK increased, with the greatest increase observed at 75 degrees C. The value of the ellipticity ratio R ([theta]222/[theta]208) of LEK in 2 molal Na2SO4 also increased, indicating a stronger interhelical association. At 50 degrees C and 75 degrees C, LEK remained predominantly alpha-helical. In phosphate buffer at neutral pH, LEE was mainly random coil. In the presence of 2 molal Na2SO4, however, the peptide formed alpha-helices that associated to form a coiled coil. At 50 degrees C and 75 degrees C, LEE became predominantly random coil but the remaining alpha-helices were still associating. These results are consistent with the strengthening of interhelical hydrophobic interactions and the absence of screening of helix-stabilizing and helix-destabilizing electrostatic interactions in amphipathic alpha-helices by Na2SO4.  相似文献   

18.
Trifluoperazine (TFP), the antipsychotic drug, induces substantial K+ efflux, membrane hyperpolarization and inhibition of H+-ATPase in the yeast Saccharomyces cerevisiae. Investigations on the mechanism of these effects revealed two different processes observed at different incubation conditions. At an acidic pH of 4.5 and an alkaline pH of 7.5, K+ efflux was accompanied by substantial proton influx which led to intracellular acidification and dissipation of delta psi formed by cation efflux. The results indicated nonspecific changes in membrane permeability. Similar results were also observed when cells were incubated at pH 5.5-6.0 with higher concentrations of TFP (above 75 microM). On the other hand, low concentrations of TFP (30-50 microM) at pH 5.5-6.0 caused marked membrane hyperpolarization and K+ efflux unaccompanied by the efflux of other cations and by H+ influx. Our experiments indicate that under these conditions K+ efflux was an active process. (1) K+ efflux proceeded only in the presence of a metabolic substrate and was inhibited by metabolic inhibitors. (2) When 0.3-0.9 mM-KCl was present in the medium at pH 6.0, the concentration of K+ within the cells (measured at the end of the incubation with TFP) was much lower than the theoretical concentration of Kin+ if the distribution of K+ between medium and cell water was at equilibrium (at zero electrochemical gradient). (3) Valinomycin decreased the net K+ efflux and decreased the membrane hyperpolarization induced by TFP, probably by increasing the flux of K+ into the cells along its electrochemical gradient. (4) Conditions which led to active K+ efflux also led to a marked decrease in cellular ATP level. The results indicate that under a specific set of conditions TFP induces translocation of K+ against its electrochemical gradient.  相似文献   

19.
Transport of SO4(2-) was studied in the glioma cell line LRM55 to determine whether it is mediated by the Cl-/HCO3- exchanger or the K+/Cl- cotransporter previously described in these cells (Wolpaw, E.W. and Martin, D.L. (1984) Brain Res. 297, 317-327). 35SO4(2-) influx was saturable with SO4(2-). External SO4(2-) stimulated 35SO4(2-) efflux, indicating an exchange mechanism. External Cl- was a competitive inhibitor of 35SO4(2-) influx. Internal Cl- stimulated 35SO4(2-) influx and external Cl- stimulated 35SO4(2-) efflux, indicating that Cl- is an exchange substrate for the SO4(2-) carrier. Also, SO4(2-) flux was sensitive to SITS, DIDS and furosemide. However, saturating external SO4(2-) did not inhibit 36Cl- influx and did not inhibit 36Cl- efflux via the Cl-/HCO3- exchanger. Moreover, K+ did not stimulate 36Cl- efflux via the Cl-/HCO3- exchanger. Moreover, K+ did not stimulate 35SO4(2-) influx as it does Cl- influx. These findings indicate that SO4(2-) transport into these cells is mediated by an exchange carrier distinct from both the Cl-/HCO3- exchanger and the K+/Cl- cotransporter. While Cl- is an alternative substrate for the SO4(2-) porter, this carrier is responsible for only a minor fraction of total Cl- flux in these cells.  相似文献   

20.
树木气孔浸润级与SO2伤害及ABA的防护作用   总被引:4,自引:1,他引:3  
以常见绿化树种为材料,通过实地测定和熏烟实验,探讨了气孔浸润级与树木SO2伤害的关系及ABA的防护效应.结果表明,在特定环境下,相同树种的气孔浸润级较为稳定,不同树种的气孔浸润级差异较大;浸润级与叶绿素结合度呈负相关变化,但不明显;与K+渗出量呈正相关(r=0.92,α<0.01),并按95%的置信度绘制了伤害预测图.不同SO2浓度条件下,对同一树种的气孔浸润级的影响甚小,不超过一个等级,K+渗出量则依大气SO2浓度和树木吸S量的增加而增多.气孔浸润级依ABA溶液处理浓度增大而降低,K+渗出量也相应减少,经2.5mol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号