首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
N S Kim  K C Armstrong  G Fedak  K Ho  N I Park 《Génome》2002,45(1):165-174
A TC/AG-repeat microsatellite sequence derived from the rice blast fungus (Magnaporthe grisea) hybridized to all of the centromeres of Hordeum vulgare chromosomes, but hybridized faintly or not at all to the chromosomes of Hordeum bulbosum. Using this H. vulgare centromere-specific probe, the chromosomes of four F1 hybrids between H. vulgare and H. bulbosum were analyzed. The chromosome constitution in the root tips of the hybrids was mosaic, i.e., 7 (7v, H. vulgare) and 14 (7v + 7b H. bulbosum), or 14 (7v + 7b) and 27 (14v + 13b), or 7 (7v), 14 (7v + 7b), and 27 (14v + 13b). The 27-chromosome tetraploid hybrid cells were revealed to have the NOR (nucleolus organizer region) bearing chromosome of H. bulbosum in a hemizygous state, which might indicate some role for this chromosome in the chromosome instability of the hybrid condition. The chromosomal distribution showed that the chromosomes of H. vulgare were concentric and chromosomes of H. bulbosum were peripheral in the mitotic squash. This non-random chromosome distribution and the centromere-specific repeated DNA differences in the two species were discussed in relation to H. bulbosum chromosome elimination. Meiotic chromosome analyses revealed a high frequency of homoeologous chromosome pairing in early prophase. However, this chromosome pairing did not persist until later meiotic stages and many univalents and chromosome fragments resulted. These were revealed to be H. bulbosum by fluorescence in situ hybridization (FISH) analysis with the H. vulgare centromere-specific probe. Because the chromosome segregation of H. vulgare and H. bulbosum chromosomes at anaphase I of meiosis was random, the possibility for obtaining chromosome substitution lines in diploid barley from the diploid hybrid was discussed.  相似文献   

2.
为了加快三倍体罗汉果育种的进程和效率,进一步提高其亲本选择性,该文对F1代3x罗汉果与其4x和2x亲本的过氧化物酶(POD)同工酶和酯酶(EST)同工酶进行了比较。结果表明:F1代3x罗汉果与其4x和2x亲本的POD和EST同工酶均有一定差异,3x和4x的POD和EST同工酶不同迁移率的平均酶带数目较2x多,酶带活性也较强;4x的POD同工酶数目较3x的多,但EST同工酶两者差异较小;F1代3x罗汉果的同工酶均出现了与其4x和2x亲本不同的新酶带,预示着其可能具有的杂种优势;聚类分析结果显示,F1代3x罗汉果与其4x母本的遗传距离更近,并且当4x母本间亲缘遗传关系较近时,其F1代3x在亲缘遗传上也相聚较近,说明F1代3x在亲缘遗传上更倾向于其4x母本。由于三倍体罗汉果育种亲本间存在杂种优势,且更倾向于其母本遗传,因此通过该研究可以初步总结出三倍体罗汉果及其父本、母本的遗传规律,并提出罗汉果三倍体良种选育的建议,即在3x罗汉果育种时需要更加关注4x母本的优良性状表现,并以亲本的遗传背景为基础,选择遗传差异较为显著的父本和母本。  相似文献   

3.
Bil'danova LL  Salina EA  Pershina LA 《Genetika》2003,39(12):1673-1679
The backcross progenies of the barley-wheat hybrids Hordeum vulgare L. (2n = 14) x Triticum aestivum L. (2n = 42) and two alloplasmic lines derived from them were studied using microsatellite markers of barley and wheat. The F1 hybrids and first backcross plants BC1 contained the genetic material of both cultivated barley and the cultivars of common wheat involved in developing of these hybrid genotypes. The genomes of BC3, BC4, and alloplasmic lines contained no microsatellite markers of the cultivated barley, whereas chromosomes of each homeologous group of common wheat were identified. In chromosomes of backcross progenies BC3, BC4, and alloplasmic lines yielded by backcrosses of hybrids and various common wheat cultivars, microsatellite markers of the parental wheat cultivars were shown to undergo recombination.  相似文献   

4.
Fertility of backcross triploid hybrids containing one genome of Prussian carp and two genomes of common carp is investigated. The females of hybrids of Prussian carp and common carp (Prussian × common carp) are prolific and produce diploid gametes. Since males of such hybrids are sterile, their reproduction is realized by means of induced gynogenesis. Triploid progeny is obtained by backcrossing female Prussian × common carp with carp males. Among triploids obtained from hybrids F1 and among hybrids of the first gynogenetic generation, there were no prolific specimens. However, in reproduction of diploid hybrids by means of gynogenesis during six generations, the female fertility in the backcross progeny is restored. From backcross triploid females (daughters of Prussian × common carp of the sixth gynogenetic generation), a viable triploid gynogenetic progeny and a tetraploid backcross (by carp) progeny are obtained. The obtained data may be considered as the experimental proof of the hypothesis of reticular speciation.  相似文献   

5.
In order to study the crossability of wheat with H. bulbosum a series of wheat varieties from various sources and their F1 hybrids as well as tetraploid H. bulbosum from different countries were used as parents in this experiment. The main results of the experiment are showed as follows: 1. Twenty-one wheat varieties from Europe, West Asia, America, China, Australia etc. 11 countries and regions respectively as famele parents were crossed with four tetraploid H. bulbosum from Hungary, USSR, Canada and Germany. The seed set percentages in the intergeneric cross combinations ranged from 0.00% to 49.93%. Statistical analysis revealed that there were significant differences between the seed set percentages of wheat varieties. The crossability, with H. bulbosum might differed in different varieties of wheat from same country. 2. Various F1 hybrids resulting from 13 and 26 intervarietal cross combinations of wheat and their parents were crossed with H. bulbosum from Hungary and USSR respectively in different years. The mean seed set percentages of F1 hybrids, their male and female parents were 26.53%, 15.38%, 20.30% and 39.1%, 34.8%, 26.7% respectively. The results indicated that when some wheat varieties having poor-crossability with H. bulbosum were hybridized with other varieties especially with those varieties having high- crossability, the crossability of their F, hybrids probably had higher crossability than their parents having poor-crossability. Six F1 hybrids of wheat obtained from six com- binations of reciprocal crosses, in which the completely non-crossable varieties Hope, Xiao- Bai-Mang and high-crossable varieties Chinese Spring, Fortunate were used as male or female parent alternately, were crossed as female parents with H. bulbosum. All of 6 F1 hybrids were crossable and gave the percentage of seed set from 7.00% to 42.57%, although they ought to carry the dominant Kr genes responsible for non-crossability, which were passed on to F1 hybrids by non-crossable varieties, the parent Hope or Xiao-Bai- Mang. Clearly that is due to the gene interaction between female and male parents. Be- sides Kr loci in wheat, probably other genes can influence the crossability. 3. There were significant differences between clones of H. bulbosum in the crossa- bilities with wheat. In conclusion F1 hybrids of wheat have higher crossability with H. bulbosum than their parents having poor-crossability. This could be advantageous for exploitation of this technique. By selecting even more efficient clones of H. bulbosum and improving embryo culture techniques, the H. bulbosum technique will be used in wheat breeding program- mes probably.  相似文献   

6.
Interspecific hybridisations between Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass) have been carried out to transfer desirable traits, such as disease resistance, from the wild species into barley. In this paper we report the results of an extensive backcrossing programme of triploid hybrids (H. vulgare 2x x H. bulbosum 4x) to two cultivars of H. vulgare. Progenies were characterised cytologically and by restriction fragment length polymorphism analysis and comprised (1) haploid and diploid H. vulgare plants, (2) hybrids and aneuploids, (3) single and double monosomic substitutions of H. bulbosum chromosomes into H. vulgare and (4) chromosomal rearrangements and recombinants. Five out of the seven possible single monosomic chromosome substitutions have now been identified amongst backcross progeny and will be valuable for directed gene introgression and genome homoeology studies. The presence amongst progeny of 1 plant with an H. vulgare-H. bulbosum translocated chromosome and one recombinant indicates the value of fertile triploid hybrids for interspecific gene introgression.  相似文献   

7.
Plants obtained from crosses between Hordeum vulgare and H. bulbosum were previously analyzed cytologically and for isozyme composition. They were identified as possessing substitutions of one or more H. vulgare chromosomes by their H. bulbosum homoeologues. To confirm their constitution and assess the merits of molecular techniques, chromosome-specific probes developed for the Triticeae were hybridized to Southern blots of DNA extracted from these plants and their parents. The hybridization patterns in the substitution plants confirmed that particular chromosomes of H. vulgare were replaced by their H. bulbosum homoeologues. For most probes, heterozygosity between pairs of H. bulbosum chromosomes was recorded. A possible duplication involving H. bulbosum homoeologues of barley chromosomes 4 and 7 was observed. Although molecular and cytological methods for analyzing chromosomally engineered plants are complementary, molecular probes may uncover differences not discernible using light microscopy or isozyme analysis.  相似文献   

8.
Two interspecific triploid (AAC) hybrids (84/1-94 and 99/1-94) from crosses between onion [ Allium cepa (2 n=2 x=16, CC)] and leek [ A. ampeloprasum (2 n=4 x=32, AAAA)] were backcrossed to leek in order to transfer a male-sterility-inducing cytoplasm from onion that would enable the production of hybrid leek. GISH evaluations of meiosis in the interspecific hybrids revealed irregularities due to univalent onion chromosomes producing micronuclei from onion chromatin, whereas the pairing of the two sets of leek chromosomes was nearly normal. Attempts to use colchicine to double the chromosome number of the hybrids failed. Backcrosses of 84/1-94 to leek as the pollen parent were not successful. The first backcross of 99/1-94 to tetraploid leek produced 11 BC(1) plants with chromosome numbers between 38 and 41. Identification of parental chromosomes by GISH showed that all eight onion chromosomes and 30-33 leek chromosomes were transmitted to the backcross progenies due to unreduced egg cells. Onion chromosomes were eliminated during the second backcross. Southern hybridization confirmed the transfer of the T-cytoplasm like source of CMS from onion to the BC(2) progenies. After the third backcross to leek, 158 plants were obtained with varying numbers of onion chromosomes and some intergenomic recombinant chromosomes. Alloplasmic leek plants without onion chromatin were selected for further characterization of male sterility and quality traits.  相似文献   

9.
Although a Chinese landrace of barley, Mokusekko 3, is completely resistant to all strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), and is known to have at least two resistant genes, rym1 and rym5, only rym5 has been utilized for BaYMV resistant barley breeding in Japan. In order to clarify the effect of rym1 on BaYMV and BaMMV, and to utilize the gene for resistant barley breeding, the susceptibilities of only rym1 carrying breeding lines against BaYMV and BaMMV were investigated. In the assessment of resistance to BaYMV-I, 341 F(2) populations derived from a cross between the resistant line Y4 with only rym1 and the susceptible cv Haruna Nijo shows that the segregation loosely fits a 1R:3S ratio (0.05 > P > 0.01), suggesting that the resistance is controlled by a single recessive gene, rym1. Further, none of the F(3) lines derived from the nine resistant F(2) plants showed any disease symptoms in the field infected by BaYMV-I. The same nine F(3) lines showed almost the same agronomic characters in the field infected by BaYMV-III as those in the uninfected field, apart from the symptom of showing numerous mosaics. This result indicates that the gene rym1 has an acceptable level of resistance to BaYMV-III. In the assessment of resistance to BaYMV-II, BaMMV-Ka1 and -Na1, an artificial infection method was adopted and the susceptibilities to those viruses were investigated. Although the control varieties, Ko A and Haruna Nijo, were infected with all of them, the rym1 gene carrying BC(2)F(3) lines were completely resistant to all strains. In summary, rym1 is completely resistant to BaYMV-I, -II, BaMMV-Ka1 and -Na1, and has an acceptable level of resistance to BaYMV-III. This study concludes with a discussion of the reason why the important resistance gene rym1 was eliminated along with resistant cultivars during breeding for resistance to BaYMV.  相似文献   

10.
Summary In a winter barley breeding program for barley yellow mosaic virus (BaYMV) resistance, the resistant six-rowed cv. Franka was crossed to 17 susceptible and two resistant cultivars, three of which were tworowed. A total of 233,445 anthers of the 19 hybrids and their parents were cultured and 831 green plants regenerated. Anther culture responsiveness varied greatly between genotypes, and the responsiveness of F1hybrids was generally related to that of the more responsive (high) parent. On average, 3.6 green plants were recovered from 1,000 cultured anthers, almost twice as many as in comparable spring barley experiments. Androgenetic green plants were tested for their reaction to mechanical inoculation of BaYMV. In crosses of resistant parents, all the cross progeny proved to be resistant, which indicates that both parents carry identical gene(s). In the crosses of the resistant cv. Franka to susceptible parents, an average of 62% of the androgenetic progenies were resistant, which indicates that probably more than one gene is responsible for Franka's BaYMV-resistance. From the crosses of Franka to two-rowed cultivars, 282 androgenetic plants were produced. When 132 of these were tested for their reaction to BaYMV, 79 (59.8%) were resistant, and 30 of the latter were shown to be two-rowed recombinant lines. Doubled haploid lines are field-tested for other agronomic characters including grain yield and its components.  相似文献   

11.
Summary Interspecific hybrids of the mungbean, Vigna radiata (L.) Wilczek (2n=22) and V. glabrescens (2n=44) were generated with the aid of embryo culture. V. glabrescens x V. radiata hybrids were recovered via germination of the immature embryos. Reciprocal hybrids were obtained via shoot formation from embryonic callus. The authenticity of the hybrids was determined by morphological characteristics, chromosome number, and isozyme patterns. The hybrids were highly sterile upon selfing, but backcrossing to the diploid parent yielded viable seeds. Some of the plants resembled the diploid parent morphologically while others resembled neither parent. The backcross plants were sufficiently fertile to give a large number of mature, selfed seeds. Plants obtained differed morphologically and in their isozyme patterns from either parent, indicating introgression. These progeny populations will be used as bridging materials to transfer pest resistance from the wild tetraploid to the cultivated mungbean.  相似文献   

12.
为了将纤毛鹅观草Z1010对黄矮病毒株系PAV和RPV的抗性基因转入普通小麦,通过幼胚拯救,获得了纤毛鹅观草Z1010×普通小麦品种莱州953的杂种F1,以及用5个普通小麦品种(系)回交的BC1衍生系。对杂种F1及BC1植株的细胞学分析表明,纤毛鹅观草Z1010不仅对Ph基因具有很强的抑制作用,而且能使杂种F1形成未减数配子,对细胞遗传学资料的进一步分析认为,通过部分同源染色体间的交换将纤毛鹅观草Z1010的抗黄矮病基因转入小麦是可能的。  相似文献   

13.
14.
Interspecific triploid hybrid plants between the tetraploid species Coffea arabica L. and the diploid species C. canephora P. were backcrossed to C. arabica. Although characterised by a low production and an important fruit dropping, all attempted crosses (ie, 6) generated BC(1) progenies. Flow cytometric analysis of the nuclear DNA content revealed that most of the BC1 individuals were nearly tetraploid. Among the male gametes produced by the interspecific triploid hybrids, those presenting a high number of chromosomes appeared strongly favoured. Only pollen mother cells having nearly 22 chromosomes were effective, the others leading to deficient endosperm and fruit dropping. Molecular markers (ie, microsatellite and AFLP) combined with evaluations of morphological characteristics and resistance to leaf rust were applied to verify the occurrence of gene transfer from C. canephora into C. arabica, and to estimate the amount of introgression present in BC(1) individuals. The results reveal a strong deficiency in the C. canephroa alleles indicating a severe counter-selection against the introgression of genetic material from C. canephora into C. arabica by way of triploid hybrids. However, introgressants displaying desirable traits such as a high resistance to leaf rust were obtained. The low level of introgression could be an advantage by facilitating the recovery of the recurrent parent and possibly reducing the number of required backcrosses. On the other hand, this could be a limitation when attempting the transfer of a complex trait or several simply inherited traits.  相似文献   

15.
Somatic hybrids of Solanum nigrum (+) 2× potato were successfully crossed with S. nigrum and with potato. First and second backcross progeny with S. nigrum could easily be obtained. One of the BC1 genotypes was already self-fertile. Backcrosses with potato had a much lower success rate. Only pollinations with tetraploid potato resulted in seed-containing berries. Two BC1 genotypes were obtained after 4362 pollinations from which 505 ovules were cultured. The first BC1 genotype grew vigorously in vitro and in the greenhouse and flowered abundantly. The second BC1 showed many abnormalities and dropped its flowers before anthesis. The first BC1 was again crossed with tetraploid potato and in this generation also the success rate was low. Over 5000 pollinations resulted in 1750 berries from which over 3000 ovules were obtained. Twelve plants germinated from these ovules and they were not as vigorous in vitro and in vivo as the BC1 parent. Some of the BC2 genotypes were used for further backcrosses but no BC3 plants were obtained. BC1 and BC2 genotypes that resulted from the backcross program with potato were tested for resistance to Phytophthora infestans. The BC1 genotype was as resistant as the S. nigrum fusion parent, but among the eight BC2 genotypes scored six were resistant, whereas two genotypes showing lesions were susceptible. Received: 19 October 1998 / Revision accepted: 20 April 1999  相似文献   

16.
Hordeum bulbosum L. is found in a diploid (2n = 14) and a tetraploid form (2n = 28). Of the 99 collections examined cytologically, 21 were diploid, 77 tetraploid and one triploid. The diploids were found in the western Mediterranean area to West Greece, tetraploids from West Greece eastwards to Afghanistan. Analysis of herbarium material and extensive cultivated material showed that the two cytotypes could not be distinguished morphologically. Intracytotype crosses were successful in the different provenance combinations, except in a few cases, where individual parental genotypes caused a low crossability. Intercytotype hybrids were rather difficult to obtain. In the light of the results a taxonomic subdivision of the species is not recommended. A problem in connection with the Linnaean type specimen is discussed.  相似文献   

17.
L Malysheva  T Sjakste  F Matzk  M R?der  M Ganal 《Génome》2003,46(2):314-322
In the present investigation, genomic in situ hybridization (GISH) and barley microsatellite markers were used to analyse the genome constitution of wheat-barley hybrids from two backcross generations (BC1 and BC2). Two BC1 plants carried 3 and 6 barley chromosomes, respectively, according to GISH data. Additional chromosomal fragments were detected using microsatellites. Five BC2 plants possessed complete barley chromosomes or chromosome segments and six BC2 plants did not preserve barley genetic material. Molecular markers revealed segments of the barley genome with the size of one marker only, which probably resulted from recombination between wheat and barley chromosomes. The screening of backcrossed populations from intergeneric hybrids could be effectively conducted using both genomic in situ hybridization and molecular microsatellite markers. GISH images presented a general overview of the genome constitution of the hybrid plants, while microsatellite analysis revealed the genetic identity of the alien chromosomes and chromosomal segments introgressed. These methods were complementary and provided comprehensive information about the genomic constitution of the plants produced.  相似文献   

18.
Summary In an attempt to transfer traits of agronomic importance from H. bulbosum into H. vulgare we carried out crosses between four diploid barley cultivars and a tetraploid H. bulbosum. Eleven viable triploid F1 plants were produced by means of embryo rescue techniques. Meiotic pairing between H. vulgare and H. bulbosum chromosomes was evidenced by the formation of trivalents at a mean frequency of 1.3 with a maximum of five per cell. The resulting triploid hybrids were backcrossed to diploid barley, and nine DC1 plants were obtained. Three of the BC1 plants exhibited H. bulbosum DNA or disease resistance. A species specific 611-bp DNA probe, pSc119.2, located in telomeres of the H. bulbosum genome, clearly detected five H. bulbosum DNA fragments of about 2.1, 2.4, 3.4, 4.0 and 4.8 kb in size present in one of the BC1 plants (BC1-5) in BamHI-digésted genomic Southern blots. Plant BC1-5 also contained a heterozygous chromosomal interchange involving chromosomes 3 and 4 as identified by N-banding. One of the two translocated chromosomes had the H. bulbosum sequence in the telomeric region as detected using in situ hybridization with pSc119.2. Two other BC1 plants (BC1-1 and BC1-2) were resistant to the powdery mildew isolates to which the barley cultivars were susceptible. Seventy-nine BC2 plants from plant BC1-2 segregated 32 mildew resistant to 47 susceptible, which fits a ratio of 11, indicating that the transferred resistance was conditioned by a single dominant gene. Reciprocal crosses showed a tendency towards gametoselection that was relative to the resistance. Mildew resistant plant BC1-2 also had a 1-kb H. bulbosum DNA fragment identified with a ten-base random primer using polymerase chain reaction (PCR). Forty-three BC1 plants, randomly sampled from the 79 BC1 plants, also segregated 2320 for the presence versus absence of this 1-kb H. bulbosum DNA fragment, thereby fitting a 11 ratio and indicating that the PCR product originated from a single locus. The 1-kb DNA fragment and disease resistance were independently inherited as detected by PCR analysis of bulked DNA from 17 resistant and 17 susceptible plants as well as by trait segregation in the 43 individual plants. The progenies produced could serve as an important resistant source in plant breeding. This is the first conclusive report of the stable transfer of disease resistance and DNA from H. bulbosum to H. vulgare.  相似文献   

19.
Genes for winter hardiness and frost tolerance were introgressed from Festuca arundinacea into winter-sensitive Lolium multiflorum. Two partly fertile, pentaploid (2n = 5x = 35) F(1) hybrids F. arundinacea (2n = 6x = 42) x L. multiflorum (2n = 4x = 28) were generated and backcrossed twice onto L. multiflorum (2x). The backcross 1 (BC(1)) and backcross 2 (BC(2)) plants were preselected for high vigor and good fertility, and subsequently, a total of 83 BC(2) plants were selected for winter hardiness after 2 Polish winters and by simulated freezing tests. Genomic in situ hybridization (GISH) was performed on 6 winter-hardy plants selected after the first winter and shown to be significantly (P < 0.05) more frost tolerant than the L. multiflorum control. Among the analyzed BC(2) winter survivors, only diploid (2n = 2x = 14) plants were found. Five plants carried 13 intact L. multiflorum chromosomes and 1 L. multiflorum chromosome with a single introgressed F. arundinacea terminal chromosome segment. The sixth BC(2) winter survivor appeared to be Lolium without any Festuca introgression capable of detection by GISH. A combined GISH and fluorescence in situ hybridization analysis with rDNA probes of the most winter-hardy (after 2 winters) and frost-tolerant BC(2) plant revealed the location of an F. arundinacea introgression on the nonsatellite arm of L. multiflorum chromosome 2, the same chromosome location reported previously as a site for frost tolerance genes in the diploid and winter-hardy species Festuca pratensis.  相似文献   

20.
Hybridisation between diploid (2n=28) dwarf birch Betula nana L. and tetraploid (2n=56) downy birch B. pubescens Ehrh. has occurred in natural populations in Iceland. About 10% of birch plants randomly collected are triploid (2n=42) hybrids. Ribosomal gene mapping on chromosomes and genomic in situ hybridisation confirms the hybridity. However, the triploid hybrids are not morphologically distinct, i.e. they are not different from diploid and tetraploid birch plants that have intermediate morphology. The triploid hybrids have evidently played an important role in driving bi-directional gene flow between these two species. This paper reviews the extent of interspecific hybridisation in selected birch woodland populations and discusses the significance of natural hybridisation and introgression in birch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号