首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
At present there is karyological information on ca 10% of the species and ca 30% of the genera of the Apocynaceae. Basic numbers of x = 6, 8, 9, 10, 11, 12, 16, 18, 20, 21 and 23 have been assessed. Of these x = 11 is primitive, occurring in ca 60% of the genera. Those of x = 6, 8, 9 and 10 have evolved by reduction, and x = 12 by increase from x = 11. In the subtribe Secondatiinae however, x = 12 is most likely the result of doubling x = 6. The numbers x = 16, 18 and 20 are likewise doubles of x = 8, 9 and 10 respectively. Those of x = 21, 23, and in one case, x = 20 are probably aneuploid products of doubles of x = 11. The two larger subfamilies, Plumerioideae and Apocynoideae have the basic numbers x = 8, 9, 10 and 11 in common and are not separable on the basis of chromosomal evidence. The third small subfamily Cerberoideae is more homogeneous according to basic number, i.e. x = 10 and 20. Most genera are characterized by a constant basic number, but some have two basic numbers; these clearly are cases of infrageneric aneuploidy. Based on records in the literature two closely related generaApocynum andTrachomitum appear to be characterized by a basic number of x = 8 as well as x = 11. This conflicting situation should be clarified by further karyological research. From the level of subtribe onwards some taxa have one basic number, but others are characterized by two or more numbers. The occurrence of similar basic numbers in different phylads of the family is considered to be the result of similar chromosomal evolution mechanisms. Approximately 22% of the investigated species are polyploid. Intrageneric polyploidy occurs with a frequency of about 12.5% and infraspecific polyploidy with less than 4%. The karyotypes observed are symmetrical: the chromosomes within a karyotype are similar in length with primary constrictions usually in a median position. In the Tabernaemontaneae however, it was observed that the karyotypes comprise one pair of distinctly heterobrachial chromosomes in addition to the metacentric ones. This tribe is also characterized by chromosomes which are relatively long. Most genera of the African continent, which are well known regarding their chromosome number, are characterized by x = 11. Exceptions areStrophantus (x = 9) with a mainly tropical African distribution. Two other genera with derived numbers, i.e.Gonioma with x = 10 andPachypodium with x = 9, occur in southern Africa and Madagascar. The genera with a non-African distribution are less known for their chromosome number. However, the available evidence suggests that evolution of derived numbers has occurred more frequently outside Africa than on this continent.  相似文献   

2.
Most members of the subfamily Mimosoideae have pantropical distributions, variable habits, and a basic chromosome number x = 13. We examined karyotypic evolution of 27 species of this subfamily occurring principally in northeastern Brazil by examining chromosomes stained with Giemsa. All of the species had semi-reticulated interphase nuclei and early condensing segments in the proximal region of both chromosome arms. The basic number x = 13 was the most frequent, with 2n = 2x = 26 in 19 of the species, followed by 2n = 4x = 52 and 2n = 6x = 78. However, the three species of the genus Calliandra had the basic number x = 8, with 2n = 2x = 16, while Mimosa cordistipula had 2n = 4x = 32. The karyotypes were relatively symmetrical, although bimodality was accentuated in some species, some with one or two acrocentric pairs. As a whole, our data support earlier hypotheses that the Mimosoideae subfamily has a basic number of x = 13 and underwent karyotypic evolution by polyploidy. However, x = 13 seems to be a secondary basic number that originated from an ancestral stock with x(1) = 7, in which polyploidy followed by descending disploidy gave rise to the current lineages with x = 13. Another lineage, including current representatives of Calliandra with x = 8, may have arisen by ascending disploidy directly from an ancestral monoploid stock with x(1) = 7.  相似文献   

3.
Cytology and breeding behavior of Solanum commersonii - S. tuberosum hybrids derived from 3 x x 4 x crosses was examined. The chromosome number of hybrids ranged from hypo-pentaploid (2 n=5 x - 8=52), to hyper-pentaploid (2 n=5 x + 7=67), with the euploid pentaploid 2 n=5 x=60 class predominant. The high variability in chromosome number of the 3 x x 4 x hybrids was attributed to the fact that meiotic restitution during megasporogenesis of the 3 x female may have involved poles with various chromosome numbers, resulting in 2 n eggs with 24-48 chromosomes. Microsporogenesis analyses provided evidence that chromosome pairing between S. commersonii and S. tuberosum genomes occurred. In addition, chromosome distribution at anaphase I and anaphase II revealed an average chromosome number of 29.5 and 29.1 per pole, respectively. To further study the extent of transmission of extra genome chromosomes from pentaploids, 5 x x 4 x and 4 x x 5 x crosses were performed, and the chromosome number of resulting progeny was determined. Ploidy ranged from 2 n=4 x=48 to 2 n=5 x=60 following 5 x x 4 x crosses, and from 2 n=4 x + 1=49 to 2 n=5 x=60 following 4 x x 5 x crosses. These results provided indirect evidence that the pentaploid hybrids produced viable aneuploid gametes with a chromosome number ranging from 24 to 36. They also demonstrated that gametes with large numbers of extra chromosomes can be functional, resulting in sporophytes between the 4 x and 5 x ploidy level. Fertility parameters of crosses involving various (aneuploid) pentaploid genotypes were not influenced by chromosome number, suggesting a buffering effect of polyploidy on aneuploidy. The possibility of successfully using (aneuploid) pentaploid genotypes for further breeding efforts is discussed.  相似文献   

4.
One hundred and ninety-three new counts are reported for the tribe Heliantheae of Compositae, mostly based on determinations of meiotic material, including first counts for the genera Adenothamnus, Chrysogonum, Enceliopsis, Guardiola, Isocarpha, Lipochaeta, Otopappus, and Oyedaea, as well as first counts for 66 species. The original counts are discussed in relation to those previously reported for the tribe, by genera and subtribe. Two-thirds of the approximately 150 genera and more than a third of the roughly 1500 species have now been examined. The incomplete knowledge of generic relationships in the tribe often make the interpretation of these chromosome numbers difficult. Three observations are documented and discussed: (1) genera with low chromosome numbers are few; (2) genera with aneuploid series are abundant; and (3) the original basic chromosome number in the tribe is probably in the range of x = 8 to x = 12.  相似文献   

5.
新疆、青海和四川等地区小麦族植物的细胞学观察   总被引:7,自引:1,他引:6  
本文对采集于新疆、青海和四川等地的小麦族(Triticeae Dumortier)10属、52种、370份种子材料进行了细胞学观察。该地区小麦族各属种的染色体数目变化范围是从2n=14到2n=84,前者主要存在于大麦属(Hordeum)、新麦草属(Psathyrostachys)和黑麦属(Secale),而后者全部集中于赖草属(Leymus)。其中染色体数目为2n=28和2n=42的类型出现的频率很高,大多存在于鹅观草属(Roegneria)和披碱草属(Elymus)。除个别种内存在不同倍性的细胞型外,绝大多数种的染色体数目非常稳定。在所有的样本中均没有观察到具非整倍体和B-染色体的材料。  相似文献   

6.
八种国产大戟属植物的核型报道   总被引:7,自引:0,他引:7  
8种大戟属Euphorbia L.植物的核型分析结果表明,大戟属不同亚属的染色体基数与其形态变 异的复杂性有一定关系。地锦草亚属subgen.Chamaesyce 3个种染色体基数分别为x=8,9,11;一品红 亚属subgen.Poinsettia两个种染色体基数均为x=7,分别为四倍体和八倍体;乳浆大戟亚属subgen. Esula 3个种,染色体基数分别为x=7,10,10。根据以前学者发表的资料分析,一品红亚属和大戟亚属 Subgen. Euphorbia的染色体基数是很稳定的,分别为x=7和x=10;通奶草E.hypericifolia为x=8 的四倍体,它不仅有染色体整倍性的变异,还有异基数性的变化。结合以前学者的研究,笔者支持x= 10为大戟属的最原始基数的观点。齿裂大戟E.dentata和通奶草具不同的染色体倍性,猫眼草E. esula的细胞染色体数目观察证实了我国存在四倍体的居群,与欧洲和北美的植物构成一个典型的多倍体复合体。  相似文献   

7.
报道了黄山地区18种木本植物的染色体数,分属于15个科中的18个属,其中14种和2个属为首次报道;同时对Aphananthe,Fortunearia,Loropetalum,Holboellia,Platycarya属的染色体数及其在分类上的意义作了简单讨论。  相似文献   

8.
In this paper, eight species of the genus Euphorbia L. were cytologically studied. The three species of the subgenus Chamaesyce Raf., E. hirta, E. humifusa and E. hypericifolia, had chromosome numbers of 2n = 18, 22 and 32, with their basic chromosome numbers being x = 9, 11 and 8 respectively. The two species of the subgenus Poinsettia (Grah.) House. E. dentata, with 2n=28, a tetraploid, and E. cyathophora, with 2n= 56, a octoploid, had both the basic chromosome number of x= 7. The three species of the subgenus Esula Pers, E. lathyris, E. helioscopia and E. hylonoma, had chromosome number of 2n= 20, 42 and 20, with their basic numbers being x= 10, 7 and 10 respectively. The basic chromosome number of x = 8 is new for E. hypericifolia, in which x = 7 was previously reported. This indicates that this species had both ploidy(2n = 4x = 28, 8x = 56) and dysploidy(x = 7, 8) variations. In E. dentata, there occurred also ploidy variation (2n = 2x, 4x and 8x). A tetraploid cytotype of E. esula was found in China, its diploid cytotype and hexaploid cytotype being previously reported in North America, the Iberian Peninsula and some other European areas. Based on our results and those previously reported, we support the viewpoint that x=10 may be the original basic chromosome number of Euphorbiaand discuss the role of polyploidy and dysploidy in the speciation and evolution of this genus  相似文献   

9.
A study was made on the phylogenetic relationships of species of the family Resedaceae, based on morphological features, chromosome meiotic behaviour, karyotype features, size and fertility of pollen grains, nucleotypic parameters, seed protein profiles and esterase isozyme patterns.For the comparison of the seed protein profiles among species a method was developed based on the presence or absence of the bands by means of a computer program. The dendrogram obtained by such a method is in line, to a great extent, with the clusters (sections) obtained within the family based on morphological features.Data on meiotic behaviour and on morphology, such as the type of fruit, carpel numbers and others, suggest that x=5 is the primitive basic chromosome number of this family. x1=6 and x2=7 are considered as secondary basic numbers derived from x=5 through aneuploid changes.The results support a proposed phylogenetic tree of the genera and sections of the genus Reseda represented in the European Flora.The principal phenomena that have operated in the evolution of the Resedaceae seem to be aneuploid changes, polyploidy and structural rearrangements. A trend towards DNA increase in the evolution of this group is also apparent.  相似文献   

10.
对6种棘豆属植物(Oxytropis)的13个居群样进行细胞学研究,其中黄花棘豆(O.ochrocephala)、绢毛棘豆(O.tatarica)、甘肃棘豆(O.kansuensis)和铺地棘豆(0.humifusa)为首次报道染色体数目(2n=16)和核型;在胀果棘豆(O.stracheyana)中(2n=48)首次发现B染色体。现有的细胞学资料表明:棘豆属植物中多倍体占总报道数的58%,这说明多倍化在本属植物的进化过程中起着非常重要的作用,但青藏高原仅有一种植物发现多倍体,多倍化并不占主导地位,而主要表现为二倍体水平上的结构变异,即核型不对称性的变化。  相似文献   

11.
Karyological studies were carried out on ten populations comprising six species of Soroseris in the tribe Lactuceae (Asteraceae), all endemic to the alpine Sino-Himalayan region and poorly known cytogenetically. The single species of Stebbinsia (one population) and two species of Syncalathium (three populations) were also examined for the first time. The basic chromosome number for the three genera is x  = 8. Stebbinsia and most species of Soroseris are diploids with 2 n  = 2 x  = 16 = 14m + 2sm and have a karyotype asymmetry type 1A. Three species of Soroseris are tetraploid (2 n  = 4 x  = 32 = 28m + 4sm). A karyotype of 2 n  = 2 x  = 16 = 14m(2SAT) + 2sm with type 1A asymmetry was found in Syncalathium kawaguchii , and of 2 n  = 2 x  = 16 = 6m + 10sm with type 2A asymmetry for two populations of Syncalathium souliei . The relationships between Soroseris and the other two genera are discussed. Our cytological results suggest that polyploidy plays a minor role in the chromosome evolution of plants from the Himalayan mountains and adjacent regions.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 79–87.  相似文献   

12.
Chromosome numbers and karyotypes of 13 populations of six Oxytropis species (Fabaceae) from the Qinghai Tibetan Plateau, China, were presented. The chromosome numbers and karyotypes in O.ochrocephala, O.tatarica, O.kansuensis and O.humifusa (2n=16) were reported for the first time. B chromosomes were found from O.stracheyana (2n=48). The basic chromosome number of x=8 is confirmed for the genus. The available chromosomal data indicate that polyploidy may have played an important role in the evolution of the genus, with the incidence of polyploidy in the genus reaching 58%. However, our results indicated that among the populations here examined only one was a hexaploid with 2n=48. Such a chromosomal pattern indicates that the karyotypic repatterning at the diploid level seems to be the predominant feature of chromosomal evolution in the Oxytropis species from the Qinghai Tibetan Plateau, and that sympatric speciation via hybridization and polyploidization has played a minor role in the species diversification of the genus from this area.  相似文献   

13.
Karyotype studies in eight species of Dalechampia , including 10 natural populations, revealed chromosome numbers (2 n = 36, 46, 138 and 198) differing from two numbers cited in the literature (2 n = 44 and 72). The basic number x = 6, as in the genus Acalypha , may be considered ancestral in Dalechampia. Analysis of chromosome number, haploid chromosome length and karyotype symmetry suggests that the major chromosome mechanism acting in karyotype evolution of Dalechampia is polyploidy, but differences in chromosome morphology may be caused by chromosome rearrangements.  相似文献   

14.
阴山荠属和泡果荠属受试种类的染色体数目是:柔毛阴山荠(Y.henryi(Oliv.)Y.H.Zhang)2n=12,叉毛阴山荠(Y.furcatopilosa(Kuan)Y.H.Zhang)2n=12,双牌泡果荠(H.shuangpaiensisZ.Y.Li)2n=44,黟县泡果齐(H.yicianensisY.H.Zhang)2n=42,双牌泡果(H.pardoxa(Hance)Y.H.Zhan  相似文献   

15.
Meiosis and mitosis of six Chinese Actinidiaceae were studied: Saurauia tristyla DC., S. miniata C. F. Liang & Y. S. Wang, Actinidia chinensis Plach., A. deliciosa (Cheval.) C. F. Liang & A. R. Ferguson, A. indochinensis Merr. and Clematoclethra lasioclada Maxim. The chromosome numbers of Saurauia tristyla and S. miniata were 2 n  = 6 x  = 78, establishing a base chromosome number of x  = 13 in the genus, differing from the previous report of x  = 15. The chromosome number of Clematoclethra was first reported to be 2 n  = 4 x  = 48 ( x  = 12), while that of Actinidia was x  = 29, consistent with previous reports. The base chromosome number of Clematoclethra ( x  = 12) was derived from an aneuploid decrease from Saurauia ( x  = 13). Actinidia (x  = 29) was derived from the palaeotetraploid ( x  = 14), which was formed through the increase of the basic chromosome number x  = 13 to x  = 14 by aneuploidy and through the breakage of a centromere to add one more new chromosome. The chromosome data in Actinidia were consistent with the geographical and morphological evidence for the evolution of the three genera. The tropical American and Asian disjunct distribution pattern and the diversity of base chromosome numbers of Saurauia further support the probability that the genus was an early divergent from a common ancestor of Actinidia and Clematoclethra .  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 369–374.  相似文献   

16.
运用贝叶斯和简约法对葱属(Allium)Amerallium亚属的核糖体DNA内转录间隔区(ITS)进行了分析,对该亚属的系统发生进行了推测。系统分析证实 Amerallium是单系的,并表明该亚属由三个隔离的地理群组成:北美Ameralliums,地中海区Ameralliums和东亚Ameralliums。性状进化的重建表明鳞茎是原始或祖先状态,根状茎和肉质增粗的根是衍生状态且在Amerallium这个亚属的类群中独立进化发生了几次。重建也表明该亚属的原始染色体基数x=7,其它染色体基数(x=8, 9, 10, 11)是由它转化而来的。在北美类群中,异基数性相当罕见,而多倍性似乎是一个相对频繁的进化事件。在地中海区类群和东亚类群中,异基数性和多倍性是染色体进化的两个主要驱动力。  相似文献   

17.
The chromosome numbers and karyotypes of Brachystemma and Craspedolobium, two monotypic genera endemic to eastern Asia, are reported here for the first time. The somatic chromosome numbers are 2n=40 for Brachystemma calycinum and 2n=22 for Craspedolobium unijugum. A karyotype of 2n=2x=40=28m+12sm was found in B. calycinum and that of 2n=2x=22=12m+10sm in C. unijugum, both of them have a moderately symmetrical karyotype type 2B and small‐sized chromosomes. Brachystemma has a unique basic chromosome number in Alsinoideae, which may support its isolated taxonomic position. As do some morphological characters, the basic chromosome number x=11 suggests that Craspedolobium belongs in the Millettioid clade.  相似文献   

18.
Based on results from phylogenetic analyses of nuclear 18S-26S rDNA internal transcribed spacer (ITS) region sequences, we suggest that the monophyletic tarweed and silversword subtribe (Madiinae) is phylogenetically nested among epaleate, x = 19 species of helenioid Heliantheae. Strong bootstrap support (100%) was obtained for a sister-group relationship between Madiinae and Arnica (including Mallotopus and Whitneya) in an analysis including representatives of recognized genera in a principally Californian clade (Madieae sensu Baldwin) identified from a phylogenetic investigation of Heliantheae s.l. (sensu lato) and Eupatorieae. In all minimum-length trees, the robust lineage comprising Madiinae and Arnica (x = 19) is part of a larger clade that also comprises Eatonella s.s. (sensu stricto), Hulsea, and Venegasia, all with x = 19. The phylogenetic position of Madiinae within a group of genera based uniformly on x = 19 leads us to conclude that the modal numbers of n = 7 and n = 8 (and other numbers, as low as n = 4) in Madiinae are the results of extreme dysploidy. Among the x = 19 "arnicoid" taxa, the near-universal characteristics of perenniality (except in the monotypic Eatonella s.s. and a minority of hulseas) and montane or high-latitudinal occurrence (except in the monotypic Venegasia) lead us to suggest that the most recent common ancestor of the tarweeds (a principally annual group of seasonally dry, low-elevation habitats) was probably a montane, herbaceous perennial resembling the unusual subalpine and alpine tarweeds constituting Raillardella s.s. (x = 17), an arnica-like genus. In Madiinae, Raillardella s.s. may be plesiomorphic in habit, capitular and ecological characteristics, and high base chromosome number. Shifts to an annual habit and to low chromosome numbers in Madiinae have been followed by subsequent episodes of polyploidy and descending dysploidy. We conclude that genome evolution in Madiinae has been marked by wide swings in chromosome number that confuse identification of diploids and polyploids.  相似文献   

19.
Chromosomal features and evolution of Bromeliaceae   总被引:2,自引:0,他引:2  
New cytological information and chromosome counts are presented for 19 taxa of 15 genera of the Bromeliaceae, among them, data for 15 taxa and five genera are reported for the first time. The basic number x = 25 is confirmed and polyploidy seems to be the main evolutionary mechanism in Bromeliaceae. Most of the analyzed species presented 2n = 50. Polyploids have been detected in Deinacanthon urbanianum with 2n = ca.160 and Bromelia laciniosa with 2n = ca.150. In Deuterocohnia lorentziana we observed individuals with two different ploidy levels (2n = 50 and 2n = 100) growing together in the same pot. Ayensua uaipanensis showed the uncommon number 2n = 46. After triple staining with CMA3/Actinomycin/DAPI one or two CMA+/DAPI bands could be observed in the studied species (Aechmea bromeliifolia, Greigia sphacelata and Ochagavia litoralis). The role of these features in the evolution of the family is discussed, revealing new aspects of the evolution of the Bromeliaceae.  相似文献   

20.
作者研究了中国产黄精属8个种的核型,结果如下:热河黄精,2n=22=14m(4SAT)+2sm(SAT)+6st;多花黄精,2n=22=8m+8sm(2sc)+6st(2sc);玉竹,2n=20=12m+8sm;小玉竹,2n=20=8m(2sc)+8sm+4st;长梗黄精,2n=16(18)=10m+4sm+2st;二苞黄精,2n=18=8m+10sm;黄精,2n=24=4m+8sm(2sc)+12st(2sc);卷叶黄精,2n=20=12m(2sc)+8sm。作者推测该属的染色体基数x=10。染色体数目进化的趋势是:非整倍性变异为主,整倍性变异为次;上升性变异为主,下降性变异为次。按照核型不对称程度,8个种的核型可分为三个等级。核型由对称向不对称进化是与染色体数目的进化趋势大体上相关的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号