首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
桦木科植物的系统发育和地理分布   总被引:21,自引:2,他引:21  
本文对桦木科植物的研究历史作了详细的总结。在钻研文献的基础上,补充了部分系统学资料,使得花序、花、芬粉、叶表皮等各类性状能够在属间进行比较。根据外类群比较、和谐性分析等原则确定了性的演化极性,利用最大同步法和最小平行演化法对桦木科植物进行了分支分析。对各属的现代分布和地史分布作了描述,在此基础上,讨论了桦木科植物的分布中心、起源地、起源的时间和散布途径。作者试图回到遥远的晚白垩纪和早第三纪,从描绘  相似文献   

2.
菰属Zizania L.植物的分支分类研究   总被引:5,自引:0,他引:5  
陈守良  徐克学 《植物研究》1994,14(4):385-394
本文应用分支分类学中的最大同步法对全世界菰属Zizania L.及其有关属种进行定量分析研究其种系发生后所得出的分支树谱图上明显表示出法洛斯属Pharus Br.不应该与菰属、稻属Oryza L.等同位在稻族Oryzeae内,而应另立法洛斯族Phareae.菰属在稻族中独立出较进化的一支,当今称为菰亚族Zizaniinae.在菰属内全世界有4种.2亚种,其演化关系为菰Z.latifolia是最原始,由它分别向得克萨斯菰Z.texana及水生菰Z.aquatica演化,再由水生菰演化至沼生菰Z.palustris。  相似文献   

3.
王红  曹诚一 《动物学研究》1993,14(2):118-127
本文对云南食植瓢虫族昆虫形态学,特别是跗爪基齿,上颚侧齿,雌、雄性外生殖器等性状的研究,讨论了本族的属间关系;应用分支系统学的原理和方法,对本族系统位置的研究进行了尝试。采用最大同步法对本族5个属8个性状状态进行了分支分析,其结果与传统分类结果有一定的差异。结论支持将食植瓢虫属分为3个亚属,其中2个为新亚属。  相似文献   

4.
Morphological features of sexual reproduction in the Volvocaceae are reviewed, focusing particularly on gametic union and zygote gemination. Both of the two conjugating gametes of the isogamous generaPandorina, Volvulina andYamagishiella bear a tubular mating structure (mating papilla), and plasmogamy is initiated by union of the papillae tips. On zygote germination, a single biflagellate gone cell is released from the zygote wall. Although all the anisogamous and oogamous genera of the Volvocaceae produce “sperm packets” during gametogenesis and a single gone cell at zygote germination, some difference can be recognized in the male gametes. The male gametes ofEudorina bear a tubular cytoplasmic protuberance (putative mating papllla) near the base of the flagella, whereas such a structure recognized at the light microscopic level is not evident inPleodorina andVolvox. Evolution of the sexual reproduction characteristics of volvocacean algae is discussed on the basis of recent cladistic analysis of morphological data as well as of the ribosomal (r) RNA phylogeny and large subunit of the ribulose-1, 5-biphosphate carboxylase/oxygenase(rbcL) gene trees. Dedicated to Emeritus Prof. Hideo Kasaki (Tokyo Metropolitan University) on the occasion of his 77th birthday. Recipient of the Botanical Society Award for Young Scientists, 1994.  相似文献   

5.
木兰科的分支分析   总被引:10,自引:1,他引:10  
主要以形态学、解剖学、细胞学为依据,以德坚木属为外类群,用分支分析的方法探讨了木兰科属间的系统发育关系。有23个分支单位,选取32个性状,根据外类群比较原则和化石地层学资料,确定了性状的祖征和衍征。对数据矩阵的分支分析使用PAUP3.1.1和Hennig 86 v.1.5分别在Macintosh和IBM机上运行,前者以启发法,后者以BB命令运算,经严格一致化处理,得到一致化分支图。结果表明:1)木  相似文献   

6.
中国菊属一些种的分支分类学研究   总被引:13,自引:0,他引:13  
运用分支分析方法研究了12种原产中国的野生菊属植物的系统发育关系,并引入了若干栽培品种及部分杂种一代植株作为分析材料。研究结果表明:分支分析方法有效而准确地将分类群分类,并揭示出毛华菊(Dendranthemarestitum)与菊花(Dendranthema×gran-diflorum)同为菊属植物中进化程度较高的种,部分种间杂种也已进入栽培类群。同时还发现不同性状在各品种间平行进化的现象。根据上述结果,作者讨论了中国菊属植物的系统进化及菊花起源问题。  相似文献   

7.
龙胆属的系统发育分析   总被引:2,自引:0,他引:2  
本文运用支序分类的原理和方法,对龙胆科龙胆属的属下等级进行了重新归类和系统发育分析。龙胆属是一个单系群,以3项近裔共性为归类依据。性状分析作了性状同源性分析和性状极性分析。性状极化主要以外类群比较、性状相关性及染色体资料为依据,其它方法,如生物重演律原则、地理递进原则以及孢粉形态等也被结合使用。分析结果,双蝴蝶属和蔓龙胆属被选择为外类群,71个性状被选择作为建立数据矩阵的基本资料。使用PAUP程序对矩阵进行了运算,得到4个最简约的谱系分支图,它们均具一致性系数0.637,支序长度为160步,f-比值范围为0.179~0.189,其中具最低f-比值的图被选作为类群归类和讨论亲缘关系的基础。在支序图上龙胆属归为15个组;其中5个组又划分为系,共包括23个系,其余组为单型组,故共有33个属下类群。一个严格的一致性谱系分支图总结了所有的一致点,从而支持了支序分析的结果。  相似文献   

8.
数量分类学和分支分类学理论建立与发展为生物分类学提供了新的方法论基础。目前,这两种分类手段都已渗透到众多的研究领域中,并且两者间也逐渐产生了相互结合的趋势,即不断发展的数量分支分类学(numerical cladistic taxonomy)方法。事  相似文献   

9.
安徽黄精属(Polygonatum)植物的分支分析   总被引:7,自引:1,他引:7       下载免费PDF全文
以形态学为依据 ,结合细胞分类学、叶表皮和花粉形态的研究成果 ,用分支分析的方法探讨了安徽产黄精属 11种植物的种间演化关系。在分支分析中 ,选择万寿竹属、舞鹤草属和竹根七属作为复合外类群。根据复合外类群比较原则和一般演化规律 ,确定性状极性。结果表明 :( 1)琅琊黄精与长苞黄精为姊妹群 ,并与其余 9种黄精明显分为 2大支 ;( 2 )另一支 9种黄精中 ,玉竹、长梗黄精和金塞黄精亲缘关系密切并与其余 6种再分为 2支 ;( 3)剩下 6种黄精中 ,距药黄精和多花黄精 2种互生叶黄精极为密切并与 4种轮生叶黄精分为 2组 ;( 4 ) 4种轮生叶黄精中 ,黄精、轮叶黄精和安徽黄精亲缘关系最为密切  相似文献   

10.
山茶属植物的进化与分布   总被引:28,自引:5,他引:28  
山茶属Camellia植物在其进化过程中,以雄芯不定数、在某些类群中存在心皮离生至合生的中间过渡,认为是山茶科中较原始的一属,分布于亚洲东部和东南部,中国长江以南广袤的亚热带地区是该属的现代分布中心,中南半岛和我国云南、广西南部的热带地区种类虽少,却集中了本属原始或较原始的类群和种类。本属演化上的近缘属或姐妹群-核果茶属Pyrenaria(包括石笔木属Tutcheria)分布区大致与本属相似,其原  相似文献   

11.
中国麻黄属的地理分布与演化   总被引:8,自引:0,他引:8  
中国现有麻黄属植物15种,2变种和1变型,这些种属于膜果麻黄组和麻黄组中的麻黄亚组,没有原始类型藤麻黄亚组的代表。我国除长江中下游及珠江流域的省区处,其他省区都有分布。麻黄花粉的化石-麻分在地层中的分布说明,麻黄在过去曾遍布我国各地,发现的最早时期是在侏罗纪,到白垩纪-早第三纪时,种类较现在丰富,将近50种,根据麻黄粉在世界各地地层中的分布和时期,结合大陆飘移和海底扩张板块构造学说推断,原麻黄在各  相似文献   

12.
水蛇亚科属于游蛇科,包含10个属。其中7个属为单型属。选取水蛇亚科14个形态学特征进行支序分析,并利用计算机软件Hennig86对水蛇亚科中8个属之间的系统发育关系进行初步探讨,结果显示水蛇亚科分为两支Gerarda和Fordonia两个属构成姊妹群,Cerberus、Erpeton和Homalopsis三个属也构成单系群,与Vorisetal(2002)的分子系统树相同,但Cantoria属的地位则与Vorisetal(2002)的明显不同。  相似文献   

13.
中国羚牛分类、分布的研究   总被引:23,自引:1,他引:23       下载免费PDF全文
吴家炎 《动物学研究》1986,7(2):167-175
羚牛(Budorcas taxicolor)这种大型偶蹄类仅产于亚洲,它的个体大小可与云南野牛(Bos gaurus)及青藏高原的牦牛(Bos grunniens)相比,但体型又酷似羊类,特别是它具有隆起的吻鼻、低矮的臀部、成兽下颌的长须以及短小的尾巴,给人以似牛非牛、似羊非羊的印象。 羚牛体型粗壮,成兽体重约200—300公斤,体长在1.8—2.1米,四肢健壮有力,肩高一般在1.3—1.4米之间。肩高大于臀高。雌雄皆具角,一般雄角较粗大。角形特别,先由头顶略靠内侧向上长出,然后以90°方向向外侧弯曲,在角的1/2处又向后方弯转,  相似文献   

14.
葛属(Pueraria DC.)的分支分析   总被引:6,自引:0,他引:6       下载免费PDF全文
本文采用24个形态状对葛属进行分支分析,得到了11个最简约分支图和一个严格一致化分支图,葛属的种间关系,根据分支分析结果对van der Maesen的葛属分类系统提出了修订意见。  相似文献   

15.
论山毛榉科植物的系统发育   总被引:8,自引:2,他引:8  
本文运用分支分类学方法,对山毛榉科植物进行了系统发育的分析。山毛榉科作为单元发生群包括柯属、锥属、粟属、三棱栎属、水青冈属和栎属。桦木科和南山毛榉属被选择作为外类群。对大量的性状进行评估之后,选择了25对性状作为建立数据矩阵的基本资料。性状极化以外类群比较为主,同时也采用了化石证据和通行的形态演化的基本原则。数据矩阵由7个分类群、2个外类群和25个性状组成。采用最大同步法、演化极端结合法和综合分析法对该数据矩阵进行了分析。在得到的3个树状分支图中按照最简约的原则,选出演化长度最短的谱系分支图作为本文讨论山毛榉科属间的系统演化关系的基础。关于山毛榉科植物的系统发育,作者的观点如下:(A)现存的山毛榉科的6个属形成了4条平行进化的分支路线,它们分别被处理作4个亚科,即:栗亚科,三棱栎亚科,水青冈亚科和栎亚科;(B)平行进化是山毛榉科植物系统发育过程中的主要形式。生殖过程中的一些特征,如:果实第二年成熟,胚珠通常败育等,是影响山毛榉科植物属间基因交流的主要原因。在现存的山毛榉科植物中,柯属是最原始的类群。三棱栎属和锥属的起源也较早,而栗属、水青冈属和栎属是特化的类群。  相似文献   

16.
中国柽柳属植物的分支分类研究   总被引:2,自引:0,他引:2  
选取生长习性、植物形态、解剖结构、花粉特征以及种子微形态特征等共66个性状,采用简约法对国产柽柳属16种植物及外类群红砂Hololachne songarica进行分支分析,并用靴带检验法(Bootstrap)计算内部分支的支持率。分支图表明,国产柽柳属植物分为4个分支,分别属于Baum(1978)所划分的组Ⅰ及组Ⅱ中不同的系,从一个侧面说明基于经典分类所划分的组是比较自然的,同意Baum的属下分类系统。同时,基于分支分类结果并结合分子证据,对国产柽柳属属间亲缘关系及有争议种的分类学地位进行了探讨,认为甘蒙柽柳是独立于中国柽柳的种,多花柽柳是独立于多枝柽柳的种,盐地柽柳是刚毛柽柳的变种,而叶抱茎呈鞘状的沙生柽柳和莎车柽柳系统学关系很近,是较为原始的一类柽柳。  相似文献   

17.
18.
杉科植物的系统发育分析   总被引:7,自引:0,他引:7  
本文以形态学为依据,参考其他学科的研究成果,用分支分类方法并结合表征分类方法探讨了杉科植物的系统演化关系,提出了新的分类系统。在分支分类中,金松科被选作外类群。主要根据外类群比较原则、化石原则和一般的演化规律,确定了性状的祖征和衍征,采用最大同步法、综合分析法、演化极端结合法及最小平行进化法共四种方法进行分支分析,选择最简约的分支图作为本文讨论基础。在表征分类中,选取59个性状,利用距离系数和类平均法,对金松属和杉科各属进行了聚类运算,得出表征图。综合两种分析结果,主要结论如下:(1)属间关系:柳杉属是现存杉科植物中最原始的类群。水松属和落羽杉属关系密切,二者与柳杉属近缘。巨杉属和北美红杉属关系密切,是中级进化水平的类群。水杉属与巨杉属和北美红杉属的亲缘关系相对较近。杉木属、密叶杉属和台湾杉属关系密切,是杉科植物中的高级进化类群,其中又以台湾杉属演化水平最高。(2)系统排列:支持金松科的成立,将杉科分成5族,即柳杉族(仅含柳杉属)、落羽杉族(含水松属、落羽杉属)、北美红杉族(含巨杉属、北美红杉属)、水杉族(仅含水杉属)和杉木族(含杉木属、密叶杉属及台湾杉属)。  相似文献   

19.
    
A cladistic analysis of the families in the Hamamelidae is made in the present paper. As a monophyletic group, the subclass Hamamelidae includes 19 families, namely, theTrochodendraceae, Tetracentraceae, Cercidiphyllaceae, Eupteleaceae, Eucommiaceae,Hamamelidaceae (incl. Rhodoleiaceae and Altingiaceae), Platanaceae, Daphniphyllaceae,Balanopaceae, Didymelaceae, Myrothamnaceae, Buxaceae, Simmondsiaceae, Casuarinaceae,Fagaceae (incl. Nothofagaceae), Betulaceae, Myricaceae, Rhoipteleaceae and Juglandaceae.The Magnoliaceae was selected for outgroup comparison after careful consideration.Thirty-two informative character states were used in this study. Three principles, namely,outgroup comparison, fossil evidence and generally accepted viewpoints of morphologicalevolution, were used for polarization of the characters. An incompatible number concept wasfirst introduced to evaluate the reliable degree of polarization of the characters and, by thismethod, the polarization of the three character states was corrected. A data matrix was constructed by the 19 ingroup families and 32 character states. Thedata matrix was analysed with the Minimal Parallel Evolutionary Method, Maximal SameStep Method (Xu 1989), and Synthetic Method. Three cladograms were constructed and aparsimonious cladogram (Length= 131)was used as the base for discussing the systematic relationships of families in the Hamamelidae. According to the cladogram, the earlist group differented in the subclass Hamamelidaeconsists of two vesselless wood families, the Trochodendraceae and Tetracentraceae. This result supports the concept proposed by Takhtajan (1987)and Cronquist (1981, 1988)that theTrochodendrales is probably a primitive taxon in the Hamamelidae. As in a clade group, the Cercidiphyllaceae, Eucommiaceae, Balanopaceae andDidymelaceae originated apparently later than the Trochodendrales. The Cercidiphyllaceaediverged earlier in this group, which implies that this family and the Trochodendrales form aprimitive group in the subclass. The Cercidiphyllaceae is either placed in Hamamelidales(Cronquist 1981, Thorne 1983), or treated as an independent order (Takhtajan 1987).Thisanalysis suggests that the Cercidiphyllaceae is a relatively isolated taxon, far from theHamamelidaceae but close to the Trochodendrales in relation. The Eucommiaceae andDidymelaceae are both isolated families and considered as two distinct orders (Takhtajan1987, Cronquist 1981, 1988).The Balanopaceae is included in the Fagales (Cronquist 1981,1988) or Pittosporales (Thorne 1983), or treated as a distinct order Balanopales (Takhtajan1987 ).Obviously the Balanopaceae and Eucommiaceae are not closely related because of thesole synapomorphy (placentation).In fact these four families are more or less isolated taxaand it is probably more reasonable to treat them as independent orders. Cronquist ( 1981, 1988) places the Eupteleaceae, Platanaceae and Myrothamnaceae inthe Hamamelidales, while Takhtajan (1987)puts Hamamelidaceae and Platanaceae into theHamamelidales and treats the Eupteleaceae and Myrothamnaceae as two independentmonofamilial orders. These three families are grouped by more synapomorphies (palmateveined, serrate or lobate leaves, deciduous and anemophilous plants)which may indicate theirclose phylogenetical affinity. A core group of the Hamamelidae includes ten families, among which the Hamamelidaceae originated earlier than the others, so that it is a relatively primitive family. The Betulaceae, Fagaceae and Myricaceae differentiated later than the Hamamelidaceae.The former two are very closely related, and thus thought to be two neighbouring orders byTakhtajan (1987)or included in the Fagales by Cronquist (1981, 1988)and Thorne (1983).The Myricaceae and Fagaceae are connected in the cladogram by only a singlesynapomorphy (endosperm absent), and therefore the close relationship does not exist between them. The Buxaceae, Simmondsiaceae and Daphniphyllaceae form an advanced group, inwhich they are weakly linked with each other by only one synapomorphy (pollengrains<25μm). The Daphniphyllaceae is closely related to the Simmondsiaceae, but theBuxaceae is rather isolated. The Rhoipteleaceae and Juglandaceae share a number of synapomorphies (axileplacentation, endosperm absent, embryo larger, fruit indehiscent) , forming a highlyspecialized group. The opinion that the Juglandales is composed of the Juglandaceae andRhoipteleaceae(Cronquist 1981; 1988, Lu et Zhang 1990)is confirmed by this analysis. Acontrary point of view, which treated them as two distinct orders by Takhtajan (1987), apparently could not be accepted. The Casuarinaceae was regarded as the primitive angiosperm (Engler 1893), but in factit is a highly reduced and specialized group. It is united with Rhoipteleaceae and Juglandaceaeby four synapomorphies, i. e. placentation type, endosperm absent, embryo large and fruitindehiscent. However, the family presents six autapomorphies, and thus the position of theCasuarinaceae as an advanced family is confirmed by this analysis. Finally a strict consensus tree, which represents the phylogenetic relationships of thefamilies in the Hamamelidae, was given as a result of the analysis.  相似文献   

20.
    
In the present paper,both cladistic analysis and phenetic analysis were conducted to evaluate the phylogenetic relationships of the Taxodiaceae based on an extensive literature review and study of herbarium. In the cladistic analysis,the Sciadopityaceae was chosen as outgroup.The polarity of characters was determined mainly according to outgroup comparison,fossil evidence and generally accepted viewpoints of morphological evolution.By the result of compatibility analysis,character 2(leaf type),which possessed a much higher coefficient than others whether or not its polarity was altered,was deleted. Finally,a data matrix consisting of all the extant nine genera and 24 characters was analyzed using Maximal Same Step Method,Synthetic Method,Evolutionary Extremal Aggregation Method and Minimal Parallel Evolutionary Method,and four cladograms were generated,of which only the most parsimonious one (Fig.1)was presented for discussion. The cladogram shows that the Taxodiaceae are assorted along five lines of evolution: 1)Metasequoia;2)Sequoiadendron,Sequoia;3)Cryptomeria;4)Glyptostrobus and Taxodium;5)Cunninghamia,Athrotaxis and Taiwania. Ten genera(including Sciadopitys)and 59 characters were used in the phenetic analysis.The phenogram(Fig.2)indicates that Sciadopitys is a very distinct group with remote affinity to the other genera,and the Taxodiaceae are divided into four groups:1)Sequoia,Sequoiadendron;2)Athrotaxis,Cunninghamia and Taiwania;3)Cryptomeria,Glyptostrobus and Taxodium;4)Metasequoia. Based primarily on the result of cladistics,with reference to that of phenetics,the mainconclusions were drawn as follows:(1)Generic relationships:Cryptomeria should be considered the most primitive genus in the extant groups of the Taxodiaceae. Glyptostrobus and Taxodium, close to Cryptomeria, are sister taxa and relatively primitive groups. Sequoiadendron and Sequoia are closely related and intermediate advanced. Metasequoia is a more or less isolated taxon, relatively close to Sequoiadendron and Sequoia. Cunninghamia. Athrotaxis and Taiwania might represent a single lineage and form a very advanced group, of which Taiwania may be the most specialized. (2) Systematic treatments: The authorssupport the viewpoint that Sciadopitys should be treated as an independent family, and suggest that the Taxodiaeae should be divided into five tribes. Systematic arrangements are as follows: Taxodiaceae WarmingTrib. 1. Cryptomerieae Vierhapper Gen. 5. Sequoia Endl. Gen. 1. Cryptomeria D. Don Trib. 4. Metasequoieae Pilger et MelchiorTrib. 2. Taxodieae Benth. et Hook. Gen. 6. Metasequoia Miki ex Hu et Cheng Gen. 2. Glyptostrobus Endl. Trib. 5. Cunninghamieae Zucc. Gen. 3. Taxodium Rich. Gen. 7. Cunninghamia R. Br.Trib. 3. Sequoieae Wettstein Gen. 8. Athrotaxis D. Don Gen. 4. Sequoiadendron Buchholz Gen. 9. Taiwania Hayata  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号