首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PS Ⅱ light harvesting chlorophyll a/b protein complexes (LHC Ⅱ ) were isolated from chloroplast of spinach (Spinacia oleracea Mill. ) and cucumber (Cucumis sativus L. ). Comparative studies were made on the polymerized forms. Chl a/b ratio, spectral characteristics and polypeptide components of these two kinds of LHC Ⅱ. Experimental results showed that the LHC Ⅱ from spinach had a Chl a/b ratio of 1.33 and the LHC Ⅱ from cucumber had a Chl a/b ratio of 1.77. The spectral characteristics of the LHC Ⅱ from cucumber also indicated the enrichment of Chl b in this LHC Ⅱ . There was also obvious differences in the polypeptide components between these two kinds of LHC Ⅱ, the LHC Ⅱ of spinach contained a 27 kD and a 25 kD polypeptides, while the LHC Ⅱ of cucumber contained only a 27 kD polypeptide. This showed that the 25 kD polypeptide contained less Chl b. The analysis of the chlorophyll protein complexes showed that the monomer, dimer and trimer of the LHC Ⅱ of spinach were composed of two polypeptides, while all the polymerized forms of cucumber’s LHC Ⅱ were composed of one polypeptide.  相似文献   

2.
When the thylakoid membranes of blue-green algae were broken by ultrasonic vibrations and subjected to polyacrylamide gel electrophoresis at 4℃, six green zones were resolved. They were designated as CPIa, CPlb, CPI; CPal, CPa2, and FC. The absorption spectrum of CPI had a red maximum at 674 nm and a peak in the blue at 435 nm. It was identified as PS chlorophyll a-protein Complex, but was contaminated with minor PSⅡ which was implied by the appearance of fluorescence emission peak at 680 nm besides the main one at 725 nm at 77 K. The spectral properties of CPIa and CPlb were similar to that of CPl. The absorption spectra of CPa1 and CPa2 were similar, both having red maxima at 667 nm and peaks in the blue at 431.5 nm. Their fluorescence emission had the same peaks at 684 nm at 77 K indicating that they belonged to PSⅡ. It was recognized that CPal of 47 kD is the reaction center complex of photosystem Ⅱ and CPa2 of 40 kD is the internal antenna complex of photosystem Ⅱ. The spectral characteristics of the chlorophyll-protein complexes resolved by ultrasonic method were similar to those of the same complexes resolved by SDS solubilization, except the absorbance positions of CPa1 and CPa2 in the blue peak and the red one which shifted to blue about 3–5 nm. It was calculated that in thylakoid membranes of blue-green algae 40.93% chlorophyll was in PSⅠ, while 38.78% of chlorophyll in PSⅡ. The difference of chlorophyll contents between PSⅠ and PSⅡ was only 2.15%. Concerning the fact that minor PSⅡ compound remained in the part of PSⅠ zones, it might be concluded that the distribution of chlorophyll between PSⅠ and PSⅡ in blue-green algae was equal. This result was in agreement with the hypothesis that PSⅠ and PSⅡ operates in series in photosynthetic electron transport.  相似文献   

3.
At least 13 chlorophyll bands from the thylakoid membranes of blue-green algae could be clearly resolved by SDS-PAGE employing a new improved procedure. They were designated as CPIa, CPIb, CPIc, CPId, CPIe, CPIf, CPIg, CHIh, CPal, CPa2, CPa3, CPa4 and FC. 8 chlorophyll-protein complexes, CPIa-CPIh, had the same absorption spectrum at 676 nm in the red and 436 nm in the blue region. They belonged to the chlorophyll-protein complexes of PS Ⅰ. 4 chlorophyll-protein complexes, CPal-CPa4, had a red absorption peak at 670­672 nm and a blue one at 436 nm. Their fluorescence emission peak at 77K was at 685 nm. They were chlorophyll-protein complexes of PS Ⅱ.  相似文献   

4.
It has been proven that the Ce content of cucumber (Cucumis sativus L. ) leaves was enhanced with the increase of CeC13 concentration in Hoagland solution. The Chl a/b ratio of cucumber leaves in the control was the same as that in the treated plant, both being 3.67. However, under lower light intensity, the Chl a/b ratio in leaves of the contral was 2.72 whereas that of the treated leaves was 2.86. It showed that only under lower light intensity Ce could decrease the contents of chlorophyll b in leaves. The authors also evidenced that Ce was able to accelerate the formation of chlorophyll-protein complexes of PS Ⅰ and 110 kD polypeptide and decrease the light harvesting complex protein and 27 kD polypeptide.  相似文献   

5.
The chlorophyll-protein and polypeptide composition of manganese deficient and control sugar beet thylakoids was examined using three different detergent-electrophoresis systems. On a per chlorophyll basis, manganese deficiency reduced the amounts of CPa complex (separated by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis), and CP 47 and CP 43 complexes (separated by octylglucoside/SDS-polyacrylamide gel electrophoresis) without decreasing the amounts of light harvesting complexes. Lithium dodecylsulfate/Triton X-100 polyacrylamide gel electrophoresis showed that manganese deficiency decreased several thylakoid polypeptides, including a chlorophyll b containing 30 kilodalton chlorophyll-protein complex, but did not decrease the amounts of 28 and 29 kilodalton light-harvesting chlorophyll b-containing polypeptides.  相似文献   

6.
Peptide composition and arrangement of 4 major light harvesting complexes LHCP1-3 and LHCP3′isolated from siphonous green algae (Codium fragile (Sur.) Hariot.) were investigated. LHCP1 showed five main peptides, 34.4, 31.5, 29.5, 28.2 and 26.5 kD in SDS PAGE, the 34.4 and 31.5 kD peptides were never found in higher plants. LHCP3 contained the other four kinds of LHCP1 peptides except 34.4 kD, while LHCP3′consisted of only 28.2 and 26.5 kD peptides. We found that 34.4, 28.2 and 26.5 kD peptides were easy to decompose from LHCP 1 when subjected to SDS PAGE without pretreatment. They might be located at the exterior of LHCP1, while the 31.5 and 29.5 kD peptides were at the central part. The 28.2 and 26.5 kD peptides often occurred in CPa, the center complex of PSⅡ. They are possibly the LHCⅡ peptides tightly associated with CCⅡ. According to the results described above, a peptide map of LHCP1 was sketched.  相似文献   

7.
properties, pigment compositions, Chl a/b ratios and apparent molecular weights of chlorophyll-protein complexes were compared between spinach and a marine green alga, Bryopsis corticulans. The results are as follows: 1. Ten chlorophyll-protein complexes were resolved from spinach thylakoid membranes solubilized by SDS in a final SDS/Chl weight ratio of 10:1, and subjected to SDS-PAGE with 11% resolution gel. CPIa 1–3 and CPI belonged to photosystem Ⅰ, and the rest to phorosystem Ⅱ. The maximum absorption of CPIa2, CPIas and CPI were all at 674nm, but that of CPIa1 at 670nm, and those of LHCII and D2 at 670 and 673nm, respectively. Chlorophyll ia PSⅡ was 63% of the total. In PSⅡ, most of chlorophyll was in LHCII which contained 86% of the chlorophyll in PSⅡ. In PSⅠ, chlorophyll in CPla was 72% of the total. Chlorophyll a was the main pigment in PSⅠ components which have Chl a/b ratio over 15. 2. Eight chlorophyll-protein complexes were isolated from B. corticulans with a SDS/Chi weight ratio of 8:1 and 8% resolution gel. The maximum absorption of CPIa, CPI, LHCII and D2 were respectively at 671nm, 673nm, 669nm and 664nm. PSⅡ contained 77% of the total chlorophyll. LHCII chlorophyll was 95% of the PSⅡ chlorophyll. CPI held 77% of PSⅠ chloro~ phyll. There was more chlorophyll b in Bryopsis complexes, especially in LHCI1 (Chl a/b< 0.8). The molecular weights of Bryopsis complexes were higher than those of the spinach complexes. Bryopsis LHCII contained siphoxanthin and siphothin, the marked pigments of Siphohales, as functional pigments. The above results revealed three points of difference between these two plants. Firstly, Chl a is the main pigment in spinach, whereas in Bryopsis the main pigments are Chl b and siphoxanthin. This is in accordance with the suggestion that plants may change their pigment composition to adapt light regime in the environment during evolution. Secondly, in Bryopsis, chlorophyll is concentrated in photosystem Ⅱ, but in spinach chlorophyll is shared evenly by two photosystems. Finally, CPI in Bryopsis contained the major part of chlorophyll in PSⅠ, yet in spinach CPIa is the superior.  相似文献   

8.
管藻目绿藻叶绿素蛋白复合物特性及比较研究   总被引:3,自引:0,他引:3  
By mild PAGE method, 11, 11, 7 and 9 chlorophyll-protein complexes were isolated from two species of siphonous green algae (Codium fragile (Sur.) Hariot and Bryopsis corticulans Setch.), green alga (Ulothrix flacca (Dillw.) Thur.), and spinach (Spinacia oleracea Mill.), respectively. Apparent molecular weights, Chl a/b ratios, distribution of chlorophyll, absorption spectra, low temperature fluorescence spectra of these complexes were determined, and compared with one another. PSⅠ complexes of two siphonous green algae are larger in apparent molecular weight because of the attachment of relative highly aggregated LHCⅠ. Four isolated light-harvesting complexes of PSⅡ are all siphonaxanthin-Chl a/b-protein complexes, and they are not monomers and oligomers like those in higher plants. Especially, the absence of 730 nm fluorescence in PSⅠ complexes indicates a distinct structure and energy transfer pattern.  相似文献   

9.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

10.
A relative decrease of the high temperature part (above 60°C) of the chlorophyll fluorescence temperature curve during 3 h to 10 h greening period of barley (Hordeum vulgare L.) leaves was found to be concomitant to a decrease of Chl alb ratio and to a gradual increase of LHCP/core ratio found by electrophoresis and the ratio of granal to total length of thylakoid membranes. It is suggested that the high temperature part of the fluorescence temperature curve depends inversely on the relative amount of LHC II in thylakoid membranes.Abbreviations Chl a(b) chlorophyll a(b) - CPa chlorophyll a protein complex of PS II - CP1 P700 chlorophyll a protein complex of PS I - FP free pigments - FTC fluorescence temperature curve - F(T30) fluorescence intensity at 30°C - LHC II light harvesting complex II - LHCP light harvesting chlorophyll protein - LHCP3 (LHCPm) monomeric form of LHC II - LHCPo oligomeric form of LHC II complex - M1 first maximum of FTC - M2 second maximum (region) of FTC - PAA polyacrylamide - PAR photosynthetically active radiation - PS I(II) Photosystem I(II) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

11.
A mild solubilization with sodium dodecyl sulphate of intermittently illuminated maize (Zea mays L. Mvsc 429) thylakoids allows the separation of a minor chlorophyll-protein in the position of the light harvesting chlorophyll-protein monomer of green plants by polyacrylamide gel electrophoresis. It contains mainly chlorophyll a, its chlorophyll b content may come from the slightly contaminating light harvesting chlorophyll a/b-protein. It represents about 15% of the chlorophyll in protochloroplasts. The new chlorophyll-protein has an absorption maximum at 672 nm, and only one fluorescence emission peak at 680 nm. A 34 kD polypeptide is the most abundant one in the polypeptide pattern of the complex. The function of the new chlorophyll-protein is unknown at present. Its relationship to other chlorophyll-proteins is discussed.  相似文献   

12.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

13.
The effect of slowly-induced water stress on the distributionof chlorophyll among the chlorophyll-protein complexes and onthe chloroplast ultrastructure was studied in Salix sp. ‘aquaticagigantea’ grown under two different light regimes. Underhigh irradiance the proportion of chlorophyll was largest inthe P700-chlorophyll-a protein complex (CPI). With increasingwater stress the proportion of the light-harvesting chlorophylla/b-protein complex (LHCP) and the chlorophyll a-protein complex(CPa) decreased, and these changes corresponded with inversechanges in the amount of chlorophyll in the protein free pigment(FP) band. The CPI complex remained stable throughout the dryingperiod. Under low irradiance the LHCP complex was the largeststructural component and its proportion of the total chlorophyllremained constant with increasing water stress. Under theselight conditions CPI and the CPa complex appeared to be thelabile components of the chloroplast lamellae. The integrityof the chloroplast membranes, as judged by electron microscopicobservations, was preserved well under both light regimes andwith increasing water stress. This and the relative constancyof the chlorophyll content during the experiments suggestedthat no great changes had occurred in the lamellar structureduring water stress. In the chloroplast stroma area, however,large crystal formations were observed under the strong lightregime with increasing water stress. In weak light these crystalstructures could be seen in the well-watered controls, but seemedto disappear totally as water stress became severe. (Received February 1, 1982; Accepted May 10, 1982)  相似文献   

14.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP1–3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

15.
The dephosphorylation of seven phosphoproteins associated with Photosystem II or its chlorophyll a/b antenna in spinach thylakoids, was characterised. The rates were found to fall into two distinct groups. One, rapidly dephosphorylated, consisted of the two subunits (25 and 27 kD) of the major light harvesting complex of Photosystem II (LHC II) and a 12 kD polypeptide of unknown identity. A marked correlation between the dephosphorylation of these three phosphoproteins, strongly suggested that they were all dephosphorylated by the same enzyme. Within this group, the 25 kD subunit was consistently dephosphorylated most rapidly, probably reflecting its exclusive location in the peripheral pool of LHC II. The other group, only slowly dephosphorylated, included several PS II proteins such as the D1 and D2 reaction centre proteins, the chlorophyll-a binding protein CP43 and the 9 kD PS II-H phosphoprotein. No dephosphorylation was observed in either of the two groups in the absence of Mg2+-ions. Dephosphorylation of the two LHC II subunits took place in both grana and stroma-exposed regions of the thylakoid membrane. However, deposphorylation in the latter region was significantly more rapid, indicating a preferential dephosphorylation of the peripheral (or mobile) LHC II. Dephosphorylation of LHC II was found to be markedly affected by the redox state of thiol-groups, which may suggest a possible regulation of LHC II dephosphorylation involving the ferredoxin-thioredoxin system.Abbreviations CP 43 43 kD chlorophyll a- binding protein - D1 and D2 reaction centre proteins of PS II - LHC II light-harvesting complex of PS II - LHC II-25 25 kD subunit of LHC II - LHC II-27 27 kD subunit of LHC II - NEM N-ethylmaleimide - PP2C protein phosphatase 2C - PS II-H psb H gene product  相似文献   

16.
Evidence is presented for the identification of the chlorophyll- protein complex CPa-1 (CP 47) as the reaction centre of photosystem II (PS II). We have developed a simple, rapid method using octyl glucoside solubilization to obtain preparations from spinach and barley that are highly enriched in PS II reaction centre activity (measured as the light-driven reduction of diphenylcarbazide by 2,6-dichlorophenolindophenol). These preparations contain only the two minor chlorophyll-protein complexes CPa-1 and CPa-2. During centrifugation on a sucrose density gradient, there is a partial separation of the two CPa complexes from each other, and a complete separation from other chlorophyll-protein complexes. The PS II activity comigrates with CPa-1 but not CPa-2, strongly suggesting that the former is the reaction centre complex of PS II. Reaction centre preparations are sensitive to the herbicide 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but only at much higher concentrations than those required to inhibit intact thylakoid membranes. A model of PS II incorporating our current knowledge of the chlorophyll-protein complexes is presented. It is proposed that CPa-2 and the chlorophyll a + b complex CP 29 may function as internal antenna complexes surrounding the reaction centre, with the addition of variable amounts of the major chlorophyll a + b light-harvesting complex.  相似文献   

17.
The effect of doubled CO2 on the chlorophyll-protein complexes of the leaves of soybean ( Glycine max L., Ca plants), cucumber ( Cucumis sativus L., C3 plant), millet ( Setaria italica (L.) Beauv., not a very typical C4 plant) and corn (Zea mays L. ,C4 plant) was studied. Experi- mental plants were pot-cultured in polyethylene membrane (or glass) open top cultured chambers. After sowing, C02 was kept immediately either at ambient ( (350 ± 10) x 10-6) concentration for the control or at doubled CO2 ((700 ± 10) x 10-6) concentration for the treatment chambers. The chlorophyll-protein complexes of the thylakoid membrane of the plants were resolved by disk SDS- PAGE. The results showed that after doubled CO2 treatment,either in the soybean and cucmnber,or in the millet, the quantity of polymer state of PS Ⅱ light-harvesting chlorophyll a/b-protein complex (LHC Ⅱ ) had increased as the monomer state of LHC Ⅱ decreased. But such response to doubled CO2 was not found in corn, the C4 plant. The change of the state of LHC Ⅱ in soybean etc. might be an adaptive effect of plant photosynthetic mechanism to the long term elevated CO2. Thus it could increase the efficiency of the absorption, transfer and conversion of light energy in plant photosynthesis, and support the high efficiency of photosynthetic carbon assimilation.  相似文献   

18.
 较系统地研究了抽穗期超高产杂交稻‘华安3号’(`X075’×`紫恢100’)冠层顶部5片叶片的光合功能。结果表明,‘华安3号’剑叶的光系统Ⅱ(PSII)光化学最大效率(Fv/Fm)、开放的PSⅡ反应中心捕获激发能效率(Fv′/Fm′)、PSⅡ电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)、表观电子传递效率(ETR)、光合色素尤其是叶绿素(Chl)和类胡萝卜素(Car)中的新黄素、黄体素和β-胡萝卜素(β-Car)的含量等均优于其下的各叶,而PSⅡ的激发压力(1-qP)低于其它叶片。经对叶片低温(77K)荧光发射光谱的Gaussian解析,与其它各叶片相比,剑叶PSⅡ核心天线复合物CP47和光系统Ⅰ(PSⅠ)的含量较高,而非活性的PSⅡ捕光色素蛋白复合体(LHCⅡ)聚集态含量较少。研究证明:1)水稻在决定籽粒产量的生育后期,其干物质的积累主要是由冠层最上面的3片叶的光合作用所提供;2)在叶片衰老过程中,光合反应中心的衰老早于天线系统;3)杂交稻的光保护途径之一,可能在于光抑制条件下通过增加PSⅠ含量及其对光能的吸收并刺激环式电子传递高速运转,从而对光合器起保护作用;4)水稻叶片在衰老过程中,可能通过部分Chl b还原为Chl a,以降低LHCⅡ的含量,从而减少对光能的捕获,达到降低光抑制的伤害。  相似文献   

19.
Eight kinds of pigment-protein complexes were resolved from the thylakoid membrane of the brown alga (Undaria pinnatifida Harv.) by using non-ionic detergent decanoyl-N-methylglucamide and PAGE technique. According to the apparent molecular weights, spectra characteristics, polypeptide compositions and referring to the higher plant spinach, eight pigment-protein complexes were named under Anderson′s terminology system as CPⅠa, CPⅠ, CPa, LHC1, LHC2, LHC3, LHC4, LHC5.  相似文献   

20.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号