首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用非固定、DMSO渗透和异硫氰酸标记的鬼笔环肽(FITC—Ph)染色方法,观察水稻花粉离体萌发过程中花粉管内肌动蛋白微丝的形态和分布。结果表明:(1)水稻花粉水合2min后即可萌发,花粉管生长速度在600~1500μm/h之间。(2)水合而未萌发的花粉粒中,大量较短的梭形微丝束构成微丝网络结构,萌发过程中花粉粒内的梭形微丝束松解,部分微丝转移至萌发的花粉管内沿花粉管纵轴呈束状结构;随着花粉管的伸长,微丝束主要分布在花粉管中前端,但在花粉管顶端区域始终未见明显的微丝束。(3)水合后不能正常萌发的花粉粒内肌动蛋白微丝呈弥散不规则分布,在相同萌发时间生长迟缓的花粉管中,微丝束较少,且主要位于花粉管近萌发孔的部位。表明微丝骨架的形态和分布影响水稻花粉管的萌发和生长。  相似文献   

2.
Summary InPicea abies (Norway spruce), microtubules and actin microfllaments both form a dense matrix throughout the tube mainly parallel to the direction of elongation. In these conifer pollen tubes the organization of this matrix is different from that in angiosperms. This study tests our hypothesis that differences in cytoskeletal organization are responsible for differences in tube growth and physiology. Pollen grains were germinated in media containing cytoskeletal disrupters and analyzed for germination, tube length, tube branching, and tip swelling. Disruption of microtubules significantly inhibits tube elongation and induces tube branching and tip swelling. Tip swelling is probably caused by disruption of the microtubules in the tip that are perpendicular to the direction of elongation. Confocal microscopy indicates that colchicine and propyzamide cause fragmentation of microtubules throughout the tube. Oryzalin and amiprophosmethyl cause a complete loss of microtubules from the tip back toward the tube midpoint but leave microtubules intact from the midpoint back to the grain. Disruption of microfilaments by cytochalasins B and D and inhibition of myosin by N-ethylmaleimide or 2,3-butanedione monoxime stops tube growth and inhibits germination. Microfilament disruption induces short branches in tubes, probably originating from defective microfilament organization behind the tip. In addition, confocal microscopy coupled with microinjection of fluorescein-labeled phalloidin into actively growing pollen tubes indicates that microfllament bundles extend into the plastid-free zone at the tip but are specifically excluded from the growing tip. We conclude that microtubules and microfilaments coordinate to drive tip extension in conifer pollen tubes in a model that differs from angiosperms.  相似文献   

3.
M. D. Lazzaro 《Protoplasma》1996,194(3-4):186-194
Summary Actin microfilaments form a dense network within pollen tubes of the gymnosperm Norway spruce (Picea abies). Microfilaments emanate from within the pollen grain and form long, branching arrays passing through the aperture and down the length of the pollen tube to the tip. Pollen tubes are densely packed with large amyloplasts, which are surrounded by branching microfilament bundles. The vegetative nucleus is suspended within the elongating pollen tube within a complex array of microfilaments oriented both parallel to and perpendicular with the growing axis. Microfilament bundles branch out along the nuclear surface, and some filaments terminate on or emanate from the surface. Microfilaments in the pollen tube tip form a 6 m thick, dense, uniform layer beneath the plasma membrane. This layer ensheathes an actin depleted core which contains cytoplasm and organelles, including small amyloplasts, and extends back 36 m from the tip. Behind the core region, the distinct actin layer is absent as microfilaments are present throughout the pollen tube. Organelle zonation is not always maintained in these conifer pollen tubes. Large amyloplasts will fill the pollen tube up to the growing tip, while the distinct layer of microfilaments and cytoplasm beneath the plasma membrane is maintained. The distinctive microfilament arrangement in the pollen tube tips of this conifer is similar to that seen in tip growth in fungi, ferns and mosses, but has not been reported previously in seed plants.  相似文献   

4.
用非固定荧光标记的鬼笔环肽作为肌动蛋白探针观察并证明了丝瓜未萌发的花粉粒和不同生长时期花粉管中肌动蛋白纤丝的分布及其形态变化。又用细胞松弛素B(CB)、氯两嗪(CPZ)及N-乙酰马来酰胺(NEM)证明了丝瓜花粉管伸长与肌动蛋白既有密切的关系,也受Ca2 的调节。  相似文献   

5.
Justus CD  Anderhag P  Goins JL  Lazzaro MD 《Planta》2004,219(1):103-109
This study investigates how microtubules and microfilaments control organelle motility within the tips of conifer pollen tubes. Organelles in the 30-m-long clear zone at the tip of Picea abies (L.) Karst. (Pinaceae) pollen tubes move in a fountain pattern. Within the center of the tube, organelles move into the tip along clearly defined paths, move randomly at the apex, and then move away from the tip beneath the plasma membrane. This pattern coincides with microtubule and microfilament organization and is the opposite of the reverse fountain seen in angiosperm pollen tubes. Application of latrunculin B, which disrupts microfilaments, completely stops growth and reduces organelle motility to Brownian motion. The clear zone at the tip remains intact but fills with thin tubules of endoplasmic reticulum. Applications of amiprophosmethyl, propyzamide or oryzalin, which all disrupt microtubules, stop growth, alter organelle motility within the tip, and alter the organization of actin microfilaments. Amiprophosmethyl inhibits organelle streaming and collapses the clear zone of vesicles at the extreme tip together with the disruption of microfilaments leading into the tip, leaving the plasma membrane intact. Propyzamide and oryzalin cause the accumulation of membrane tubules or vacuoles in the tip that reverse direction and stream in a reverse fountain. The microtubule disruption caused by propyzamide and oryzalin also reorganizes microfilaments from a fibrillar network into pronounced bundles in the tip cytoplasm. We conclude that microtubules control the positioning of organelles into and within the tip and influence the direction of streaming by mediating microfilament organization.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations APM Amiprophosmethyl - FITC Fluorescein isothiocyanate - LATB Latrunculin B  相似文献   

6.
Actin filament patterns during pollen germination in Hosta caerulea Tratt. were visualized with a simple method in which there was no pre-fixation, with dimethylsulphoxide (DMSO) as a permeabilising agent and staining with TRITC-Phalloidin. The cytoplasm of the vegetative cell of the ungerminated pollen grain contained numerous crystalline fusiform bodies to constitute a storage form of actin. These bodies were transferred to the emerging pollen tube after the germination of the pollen grain. Following the growth of pollen tube, the fusiform bodies were gradually dissociated, branched, slenderized and formed a cross-linked actin network. During the further growth of the pollen tube, the preponderance of longitudinally-oriented thin actin filaments with some anastomoses to form a more complex network present always in the long pollen tube. This was the typical pattern of actin filaments in most cases. In some conditions, actin filaments were assembled to form thick actin cables near the proximate part of the pollen tube tip. The branching and connecting of the cables were probably also seen in some parts. Actin filaments were always entering to the apical region of a tube tip. The significance of the non-fixation and fluorescence-phalloidin (FI-Ph) method and the problems in the future studies are discussed  相似文献   

7.
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.  相似文献   

8.
用非固定的、二甲基亚砜作为渗透剂的、异硫氰四甲基罗丹明标记的鬼笔环肽染色方法,观察了紫萼(Hosta caerulea Tratt.)未萌发的花粉粒及不同生长时期的花粉管中的肌动蛋白纤丝的形式。显示未萌发的花粉粒中具有结晶状的梭状体,为肌动蛋白的一种贮藏形式。花粉萌发时,这种梭状体转移到短的花粉管中,逐渐松解、分支和形成肌动蛋白纤丝交错的网络。在花粉管迅速生长和达到一定长度时,肌动蛋白纤丝形成以与花粉管长轴平行的细丝占优势的网络系统,这是在大多数情况中紫萼花粉管典型的肌动蛋白纤丝的形式。在某些条件下,在花粉管接近顶端的前部,肌动蛋白纤丝可集合成长的粗束,这种粗束也常有分支和并合。肌动强白纤丝一直分布到花粉管的末端。讨论了研究肌动蛋白纤丝的非固定方法的重要性和进一步研究花粉管肌动蛋白纤丝值得注意的问题。  相似文献   

9.
Summary Controversy over whether the apical region of a growing pollen tube contains a dense array of actin microfilaments (MFs) was the impetus for the present study. Microinjection of small amounts of fluorescently labeled phalloidin allowed the observation of MF bundles inLilium longiflorum pollen tubes that were growing and functioning normally. The results show that while the pollen tube contains numerous MF bundles arranged axially, the apical region is essentially devoid of them. The MF bundles could be seen shifting and changing in distribution as the cells grew, but they always remained out of the apical regions. Perturbation of normal growth and function by caffeine causes a change in the MF distribution, which returns to normal upon removal of caffeine from the growth medium. The lack of MFs in the apex is confirmed by careful immunogold electron microscopic analysis of thin sections of rapidly frozen and freeze-substituted pollen tubes, in which very fine MF bundles could be seen somewhat closer to the tip than is discernible with fluorescence microscopy. Still, these are very few in number and are basically absent from the very tip. Thus a reassessment of current assumptions about the distribution of actin in the pollen tube apical region is required.Abbreviations MF microfilaments - FITC fluorescein isothiocyanate - RF-FS rapidly frozen and freeze-substituted - EM electron microscopy Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

10.
Summary In an attempt to correlate structural effects with the known dissipation of the tip-focused Ca2+ gradient caused by caffeine, we have examined the ultrastructure of caffeine-treated lily pollen tubes prepared by rapid freeze fixation and freeze substitution. We show that treatment with caffeine results in a rapid rearrangement of secretory vesicles at the pollen tube tip; the normal cone-shaped array of vesicles is rapidly dispersed. In addition, microfilament bundles appear in the tip region, where they had previously been excluded. Delocalized vesicle fusion continues in the presence of caffeine but tube extension ceases. Removal of caffeine from the growth medium initially causes tip swelling, delocalized vesicle fusion and presence of microfilaments well into the tip before normal structure and growth resume, concurrent with the previously reported return to a normal Ca2+ gradient.Abbreviations ER endoplasmic reticulum - MES 2-[N-morpholino] ethanesulfonic acid - MFs microfilaments  相似文献   

11.
Summary The organization of actin microfilaments (MFs) was studied during pollen development ofBrassica napus cv. Topas. Cells were prepared using three techniques and double labelled for fluorescence microscopy with rhodamine-labelled phalloidin for MFs and Hoechst 33258 for DNA. Microfilaments are present at all stages of pollen development with the exception of tricellular pollen just prior to anthesis. Unicellular microspores contain MFs which radiate from the surface of the nuclear envelope into the cytoplasm. During mitosis MFs form a network partially surrounding the mitotic apparatus and extend into the cytoplasm. Both cytoplasmic and phragmoplast-associated MFs are present during cytokinesis. Nuclear associated-, cytoplasmic, and randomly oriented cortical MFs appear in the vegetative cell of the bicellular microspore. Cortical MFs in the vegetative cell organize into parallel MF bundles (MFBs) aligned transverse to the furrows. The MFBs disappear prior to microspore elongation. At anthesis MFs are restricted to the cortical areas subjacent to the furrows of the vegetative cell. The use of cytochalasin D to disrupt MF function resulted in: (1) displacement of the acentric nucleus in the unicellular microspore; (2) displacement of the spindle apparatus in the mitotic cell; (3) symmetrical growth of the bicellular microspore rather than elongation and (4) inhibition of pollen tube germination in the mature pollen grain. This suggests that MFs play an important role in anchoring the nucleus in the unicellular microspore as well as the spindle apparatus during microspore mitosis, in microspore shape determination and in pollen tube germination.Abbreviations MF microfilament - MFB microfilament bundle - rhph rhodamine phalloidin Dedicated to the memory of Professor John G. Torrey  相似文献   

12.
Rop, the small GTPase of the Rho family in plants, is believed to exert molecular control over dynamic changes in the actin cytoskeleton that affect pollen tube elongation characteristics. In the present study, microinjection of Rop1Ps was used to investigate its effects on tip growth and evidence of interaction with the actin cytoskeleton in lily pollen tubes. Microinjected wild type WT-Rop1Ps accelerated pollen tube elongation and induced actin bundles to form in the very tip region. In contrast, microinjected dominant negative DN-rop1Ps had no apparent effect on pollen tube growth or microfilament organization, whereas microinjection of constitutively active CA-rop1Ps induced depolarized growth and abnormal pollen tubes in which long actin bundles in the shank of the tube were distorted. Injection of phalloidin, a potent F-actin stabilizer that inhibits dynamic changes in the actin cytoskeleton, prevented abnormal growth of the tubes and suppressed formation of distorted actin bundles. These results indicate that Rop1Ps exert control over important aspects of tip morphology involving dynamics of the actin cytoskeleton that affect pollen tube elongation. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
A comparison of actin localization in pollen tubes of Nicotiana has been made using a monoclonal actin antibody and rhodamine-phalloidin (RP). The monoclonal antiactin, based on Western blotting of pollen tube extract, labels a polypeptide at 45 kD that comigrates with muscle actin. A 51-kD unknown protein and three bands less than 45 kD, presumed to be proteolytic fragments of actin, are also observed. Structural observations using this antibody reveal a network of axially oriented strands of microfilaments (MFs). The MFs are distributed throughout the length of the pollen tube except at the very tip, where diffuse staining is usually observed. A similar pattern of MFs is evident after RP staining. When pollen tubes are treated with cytochalasins (CB or CD) cytoplasmic streaming is inhibited, as is tube elongation. Microscopic analysis reveals that the microfilament (MF) pattern is markedly altered; however, the antibody and RP produce different staining patterns. The antibody reveals many MF strands that distribute throughout the tube length and extend into the very tip. In contrast, RP shows mostly a diffuse staining pattern with only a few short clumps of filamentous material. Immunogold labelling of sections of pollen tubes prepared by rapid-freeze fixation and freeze substitution reveals that actin MF bundles are indeed present after cytochalasin treatment. Our results thus question reports in the literature, based on phalloidin staining, asserting that cytochalasin fragments or destroys actin MFs.  相似文献   

14.
Pollen protoplasts were isolated from the mature pollen grains of Narcissus cyclamineus using cellulase Onozuka'R-10 and pectinase in Bs medium. The microtubule cytoskeleton in the pollen protoplasts was studied using immunofluorescence and confocal microscopy. In the cortical region there was a very complex microtubule network. The network contained numerous whirl-like arrays. The microtubule bundles in the whirl-like arrays were connected with each other by smaller bundles indicating that the arrangement of the whirl-like bundles were quite well organized and not at random. From the cortex to the centre of the protoplast another microtubule network having a structure different from the one in the cortical region was present. This network was much loosely packed than the cortical network. The arrangement of the microtubule bundles near the vegetative nucleus was again different. Numerous granules appeared outside the nuclear membrane. From these granules microtubule bundles radiated towards the cytoplasm. The arrangement of the microtubule network around the generative cell showed no specialized features. But inside the cell three types of microtubule arrays were present. 1. parallel arrays, 2. network, and 3. a mixture of the two. In the bursted pollen protoplast (as a result of osmotic shock treatment )some microtubule bundles could still be found attached to the ghost. The microtubule bundles associated with the ghost were much fragmented. But some still retained their branches and junctions. In the dry cleaved samples,a number of organelles still remained attached to the membrane and they included : microtubules, microfilaments, coated vesicles, endoplasmic reticulum and numerous honey-comb-like apparatus. The honey-comb-like apparatus was named as coated pits by Traas (1984). But we feel that it is more appropriate to call this organelle the honey-comb apparatus and we also believe that this organelle may be involved in microtubule and/or microfilament organization.  相似文献   

15.
Abreu I  Oliveira M 《Protoplasma》2004,224(1-2):123-128
Summary. The cell wall composition of germinating pollen grains of Actinidia deliciosa was studied by immunolocalization with monoclonal antibodies against arabinogalactan proteins (AGPs) and pectins. In ungerminated pollen, the JIM8 epitope (against a subset of AGPs) was located in the intine and in the cytoplasm, while the MAC207 epitope (against AGPs) was only located in the exine. After germination, the JIM8 and MAC 207 epitopes were located in the cytoplasm and in the pollen tube wall. The Yariv reagent that binds to AGPs was added to the germination medium inducing a reduction or inhibition in pollen germination. This indicates that AGPs are present in the growing pollen tube and play an important role in pollen germination. To identify the nature of the pectins found in pollen grains and tubes, four monoclonal antibodies were used. The JIM5 epitope (against unesterified pectins) was located in the intine, more intensely in the pore region, and along the pollen tube wall, and the JIM7 epitope (against methyl-esterified pectins) was also observed in the cytoplasm. After germination, the JIM5 epitope was located in the pollen tube wall; although, the tube tip was not labelled. The JIM7 epitope was located in the entire pollen tube wall. LM5 (against galactans) showed a labelling pattern similar to that of JIM5 and the pattern of LM6 (against arabinans) was similar to that of JIM7. Pectins show different distribution patterns when the degree of esterification is considered. Pollen tube wall pectins are less esterified than those of the pollen tube tip. The association of AGPs with pectins in the cell wall of the pollen grain and the pollen tube may play an important role in the maintenance of cell shape during pollen growth and development.Correspondence and reprints: Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.  相似文献   

16.
本文应用透射电镜对朱顶红成熟花粉水合、活化和萌发的动态过程中营养细胞质的结构和组成变化进行了观察。成熟花粉具质体、线粒体、内质网、高尔基体。微丝束以聚集体的形式存在。花粉活化后,细胞器的数目和结构发生显著变化:质体和线粒体的片层明显增加,内质网片层狭窄,高尔基体活跃产生小泡,脂体降解及微丝聚集体散开。花粉萌发后,细胞质中出现周质微管和被刺小泡,此期细胞器的变化不明显。微丝以纤丝状遍布整个花粉管中。  相似文献   

17.
Summary The structure and organization of the cytoskeleton in the vegetative cell of germinated pollen grains and pollen tubes ofPyrus communis was examined at the ultrastructural level via chemical fixation and freeze substitution, and at the light microscopic level with the aid of immunofluorescence of tubulin and rhodamine-phalloidin.Results indicate that cortical microtubules and microfilaments, together with the plasma membrane, form a structurally integrated cytoskeletal complex. Axially aligned microtubules are present in cortical and cytoplasmic regions of the pollen grain portion of the cell and the distal region of the pollen tube portion. Cytoplasmic bundles of microfilaments are found in association with elements of endoplasmic reticulum and vacuoles. Axially aligned microfilaments are also found in this region, associated with and independent of the microtubules. Microtubules are lacking in the subapical region where short, axially aligned microfilaments are found in the cell cortex. In the apical region, which also lacks microtubules, a 3-dimensional network of short microfilaments occurs. Microfilaments, but not microtubules, appear to be associated with the vegetative nucleus.  相似文献   

18.
Summary. Pears (Pyrus pyrifolia L.) have an S-RNase-based gametophytic self-incompatibility system, and S-RNases have also been implicated in self-pollen or genetically identical pollen rejection. Tip growth of the pollen tube is dependent on a functioning actin cytoskeleton. In this study, configurations of the actin cytoskeleton in P. pyrifolia pollen and effects of stylar S-RNases on its dynamics were investigated by fluorescence and confocal microscopy. Results show that actin filaments in normal pollen grains exist in fusiform or circular structures. When the pollen germinates, actin filaments assembled around one of the germination pores, and then actin bundles oriented axially throughout the shank of the growing tube. There was a lack of actin filaments 5–15 μm from the tube tip. When self-stylar S-RNase was added to the basal medium, pollen germination and tube growth were inhibited. The configuration of the actin cytoskeleton changed throughout the culturing time: during the first 20 min, the actin configurations in the self-pollen and tube were similar to the control; after 20 min of treatment, the actin filaments in the pollen tube gradually moved into a network running from the shank to the tip; finally, there was punctate actin present throughout the whole tube. Although the actin filaments of the self-pollen grain also disintegrated into punctate foci, the change was slower than in the tube. Furthermore, the alterations to the actin cytoskeleton occurred prior to the arrest of pollen tube growth. These results suggest that P. pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen grains and tubes. Correspondence: Shao-ling Zhang, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China.  相似文献   

19.
With regard to adaptation of green ash (Fraxinus pennsylvanica Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 μm) in 2001 and 25°C (899.50 μm) in 2002 after 6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 μm) after 6 hours. It can be concluded that green ash pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination is higher than 20°C.  相似文献   

20.
Ultrastructure of microfilaments in pollen grains and pollen tubes of Hosta ventricosa (=H. coerulea) was investigated. Results indicate that microfilaments with conventional chemical fixation are preserved only in pollen grains, but destroyed in pollen tubes. Microfilaments treated with phalloidin before chemical fixation are found preserved in pollen tubes. In pollen grains a pronounced organization of parallel microfilaments appeared in bundles with its distribution characteristics is always restricted to their functional domains where bundles were in close contact with the vegetative nucleus. In young pollen tubes cytoplasmic bundles of microfilaments appeared also to pass close to the surface of mitochondria, plastids, endoplasmic reticulum, vesicles and small vacuoles, and always associated with lipid bodies. These findings strongly indicate that there is a relationship between microfilaments and the movement of vegetative nucleus and other organelles in the germination of pollen grains and in the growth of pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号