首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Yuan  Z Zhang 《Mutation research》1992,272(2):125-131
A study of some factors affecting sister-chromatid differentiation (SCD) and sister-chromatid exchanges (SCE) in Hordeum vulgare is reported. After we studied the influence of 5-fluorodeoxyuridine (FdU) and growth temperature on SCE in barley cells, and the effect of FdU, growth temperature, the growth time of plant cells in 5-bromo-2-deoxyuridine (BrdU) solution on SCD, we found an experimental condition under which the frequency of SCE is lower, but the percentage of SCD is higher. Our data show that ascorbic acid, mitomycin C, adriamycin, and maleic hydrazide induce SCEs in cells of Hordeum vulgare by means of free radicals. This can be shown from the two observations: (1) sulfhydryl compounds such as cysteine and glutathione can completely or partially inhibit the SCEs induced by ascorbic acid, mitomycin C, adriamycin and maleic hydrazide; (2) the amounts of free radicals in root tips correlate with the frequencies of SCE in root tip cells.  相似文献   

2.
Two aphidicolin-resistant cell mutants (AC 12 and AC 41) with a fourfold increase in spontaneous frequency of sister chromatid exchanges (SCEs) were obtained out of over 400 aphidicolin-resistant mutants isolated from mouse lymphoma L5178Y cells. They also exhibited three- to fourfold increases in spontaneous frequency of chromosome aberrations (CAs). To determine whether the high level of SCE frequency in AC 12 is caused by 5-bromodeoxyuridine (BrdUrd) used for visualizing SCEs, the effect of BrdUrd incorporated into DNA on SCE induction was analyzed. The SCE frequencies in AC 12 remained constant at BrdUrd incorporation levels corresponding to 2-90% substitution for thymidine in DNA. In addition, the small amount of BrdUrd incorporated into both daughter and parenteral DNA strands in AC 12 had minimal effect on SCE induction. Furthermore, AC 12 and AC 41 were slightly resistant to BrdUrd with respect to the induction of CAs, the inhibition of cell-cycle progression and the decrease in mitotic activity. These findings suggest that the high incidence of SCEs in AC 12 and AC 41 is formed by their intrinsic defects, not by the effects of BrdUrd used. The analysis of SCE frequencies in hybrid cells between these mutants and the parental L5178Y revealed that the genetic defects in AC 12 and AC 41 appear to be recessive, and that these two mutants belong to the same complementation group. Furthermore, AC 12 belonged to a different complementation group from ES 4, which was isolated previously from L5178Y as an SCE mutant with a twofold higher frequency of spontaneous SCEs. This finding indicates that at least two different genetic defects participate in the formation of the high incidence of spontaneous SCEs in mouse cells. These SCE mutants would provide valuable cell materials for studying the molecular mechanism of SCE formation.  相似文献   

3.
The frequency of sister chromatid exchanges (SCEs) was determined for the chromosomes (except Y2) of the Indian muntjac stained by the fluorescence plus Giemsa (FPG) or harlequin chromosome technique. The relative DNA content of each of the chromosomes was also measured by scanning cytophotometry. After growth in bromodeoxyuridine (BrdU) for two DNA replication cycles. SCEs were distributed according to the Poisson formula in each of the chromosomes. The frequency of SCE in each of the chromosomes was directly proportional to DNA content. A more detailed analysis of SCEs was performed for the three morphologically distinguishable regions of the X-autosome composite chromosome. The SCE frequency in the euchromatic long arm and short arm were proportional to the amount of DNA. In contrast, the constitutive heterochromatin in the neck of this chromosome contained far fewer SCEs than expected on the basis of the amount of DNA in this region. A high frequency of SCE, however, was observed at the point junctions between the euchromatin and heterochromatin.  相似文献   

4.
Iu S Lazutka  V V Dedonite 《Tsitologiia》1989,31(10):1206-1210
Sister chromatid exchanges (SCE) and average generation time (AGT) were studied in lymphocytes from 35 donors (23 females and 12 males). A higher SCE frequency was found in lymphocytes from females than from males. Smoking increased SCE frequency in lymphocytes of males, but not of females. No differences in AGTs between males and females were found. Partial correlation coefficients between SCE frequency, AGT values, donor's age and smoking were determined. A statistically significant correlation (r = 0.650, P less than 0.01) between SCE frequency and AGT was found in lymphocytes obtained from females. In lymphocytes from males statistically significant partial correlation coefficients were detected between SCE frequency and AGT (r = -0.696, P less than 0.05), SCE frequency and donor's age (r = 0.770, P less than 0.01), SCE frequency and smoking intensity (r = 0.697, P less than 0.01), AGT value and donor's age (r = 0.882, P less than 0.01), and AGT value and smoking (r = 0.634, P less than 0.05). Thus, considerable differences in number of indices between males and females exist. The present observations together with other studies (D'Souza et al., 1988) suggest that considerations for population monitoring using cytogenetic techniques (ICPEMC Publication No 14) may be supplemented with the recommendation to use (whenever it possible) only males as donors in population studies.  相似文献   

5.
The effect of cell fusion and deoxynucleosides (deoxyadenosine, dA; deoxyguanosine, dG; deoxycytidine, dC; thymidine, T) on sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) was studied in two types of BrdU (bromodeoxyuridine)-sensitive and BrdU-resistant B-lymphoblastoid cell lines (LCLs) with respect to cellular proliferation in BrdU-labeled culture conditions. Cell fusion between BrdU-sensitive and BrdU-resistant BS B-LCLs did not exhibit complementation, although when any of the BS B-LCLs (retaining high SCE character) labeled with BrdU were fused with non-labeled normal cells, the hybrid cells had a normal level of SCE at the first mitosis after fusion. Deoxycytidine addition showed no effect on SCEs in normal cells but decreased SCEs in BS cells from the baseline level of 70 SCEs/cell to about 60 SCE/cell. Purine deoxyribonucleosides (dG and dA) caused a significant concentration-dependent increase in SCE frequency both in normal and BS cells. Although T caused a 2-fold increase in normal SCEs, it highly decreased BS SCE from 70 SCEs/cell to 35 SCEs/cell. FrdU did not greatly affect BS SCE in the presence of BrdU and T. These observations indicate strongly that BS cells may have a low thymidine pool compared with normal cells, which could account for a more efficient BrdU substitution in the DNA thus potentiating the template effect on SCE.  相似文献   

6.
The influence of low doses of 5-bromodeoxyuridine (BrdU) on the occurrence of sister chromatid exchanges (SCEs) during the first cell cycle, when unsubstituted DNA templates replicate in the presence of the halogenated nucleoside (SCE1) has been assessed in third mitosis (M3) Chinese hamster ovary (CHO) cells showing three-way differential (TWD) staining. In addition, lower concentrations of BrdU, not detectable by Giemsa staining, have been tested by a high resolution immunoperoxidase method (anti-BrdU monoclonal antibody) and SCEs were scored in second mitosis (M2) cells. Our findings was a dose-response curve for SCE1 that allows an estimated mean spontaneous yield of 1.32/cell per cell cycle by extrapolation to zero concentration of BrdU. On the other hand, when the total SCE frequency corresponding to the first and second rounds of replication (SCE1+SCE2) found in M3 chromosomes was compared with the yield of SCEs scored in M2 cells grown in BrdU at doses lower than 1 M no further reduction was achieved. This seems to indicate that SCEs can occur spontaneously in this cell line, though the estimated frequency is higher than that reported in vivo.by S. Wolff  相似文献   

7.
The relative importance of DNA-DNA cross-links and bulky monoadducts in sister chromatid exchange (SCE) formation was investigated in three human fibroblast cell lines with different repair capabilities. These cell lines included normal cells, which can repair both classes of lesions; xeroderma pigmentosum (XP) cells, which cannot repair either psoralen-induced cross-links or monoadducts; and an XP revertant that repairs only cross-links and not monoadducts. SCEs were induced by two psoralen derivatives, 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and 5-methylisopsoralen (5-MIP). After activation with long-wave ultraviolet light, HMT produces cross-links and monoadducts in DNA, whereas 5-MIP produces only monoadducts. In normal human cells both psoralens induced SCEs, but if cells were allowed to repair for 18 h before bromodeoxyuridine (BrdUrd) was added for SCE analysis, the SCE frequency was significantly reduced. XP cells showed an SCE frequency that remained high regardless of whether SCEs were analyzed immediately after psoralen exposure or 18 h later. In the XP revertant that repairs only cross-links, both psoralens induced a high yield of SCEs when BrdUrd was added immediately after psoralen treatment. When XP revertant cells were allowed 18 h to repair before addition of BrdUrd, the SCEs induced by HMT were greatly reduced, whereas those induced by 5-MIP were only slightly reduced. These observations indicate that both cross-links and monoadducts are lesions in DNA that can lead to SCE formation.  相似文献   

8.
The effect of pretreatment with cysteamine on gamma-radiation-induced sister chromatid exchanges (SCEs) and on the mitotic index and average generation time was determined. Groups of mice were treated in one of the following regimens: (1) irradiated, (2) treated with cysteamine and irradiated, (3) treated with cysteamine only, or (4) left untreated. Intraperitoneal administration of cysteamine preceding gamma-radiation exposure protected against SCE induction. However, radioprotection was not reflected by change in the mitotic index or in the average generation time. The results suggest that, under the experimental conditions of this study, the SCEs are caused by free radicals produced by gamma radiation, but not the additional damage indices measured.  相似文献   

9.
Hypersensitivity of Bloom's syndrome fibroblasts to N-ethyl-N-nitrosourea   总被引:5,自引:0,他引:5  
Fibroblast cells from two Japanese patients with Bloom's syndrome (BS) and normal donors were studied for the inactivation of colony-forming ability and the induction of sister-chromatid exchanges (SCEs) after N-ethyl-N-nitrosourea (ENU) treatment. The reduction of ENU-induced SCEs as a function of post-treatment incubation time was also compared between BS and normal fibroblasts. BS cells were approximately 4 times more sensitive than normal cells to the lethal effect of ENU and remarkably hypersensitive to the SCE induction by ENU. The post-treatment incubation of ENU-treated normal cells in the fresh medium resulted in a time-dependent decrease of the SCE level until 6 h after which time the SCE level remained the plateau of about 50% of the initial level. In contrast, the ENU-induced SCEs in BS cells decreased much more slowly with post-treatment incubation time and its half life was 24 h. These results collectively support the view that BS cells may be defective in the rapid repair of certain type(s) of DNA damages induced by ENU.  相似文献   

10.
Hatao Kato 《Chromosoma》1977,59(3):179-191
By taking advantage of the fact that fluorescent light (FL) induces strand breaks only in bromodeoxyuridine(BrdU)-substituted DNA, and that those breaks eventually lead to the formation of sister chromatid exchanges (SCEs), the response of SCEs to FL was studied carefully in Chinese hamster chromosomes in which, out of four DNA strands, BrdU-substitution had occurred either in one or three strands. The FL-induced SCE frequency did not differ greatly between these two types of chromosomes. However, when they were submitted to caffeine treatment, a drastic increase in the frequency was detected in the trifilarly-substituted chromosomes while a significant decrease occurred in the unifilarly-substituted chromosomes. Based on these results, a working hypothesis was developed that the SCE can arise by at least two different mechanisms, one operating at replicating points probably utilizing the machinery of DNA replication, and the other acting only in the post-replicational DNA portion, probably in a similar fashion as assumed in a general model of crossing over in the eukaryote. These dual mechanisms may account for the discrepancy encountered in the explanations of the induction of SCEs by various exogenous agents as well as spontaneous SCEs. The present study also showed that some, but clearly not all, of chromatid deletions are the outcome of the failure to complete SCEs arising through these mechanisms.  相似文献   

11.
12.
To test whether sister chromatid exchange (SCE) scores on human chromosomes have a uniform distribution, simulated SCE scores were generated and compared with observed scores using log-linear models. The analysis was performed at the level of the chromosome groups. Using this method we first tested whether the number of SCEs was distributed uniformly, i.e. proportional to the relative length of the chromosomes. Refinements of this hypothesis were made by considering a variable region around a first SCE to be inert for other SCEs and by making the occurrence of an SCE on a chromosome dependent on the occurrence of another SCE on the same chromosome. In further analyses it was tested whether the number of SCEs was proportional to the number of G bands on a chromosome, or to the DNA content of the chromosomes. None of the tested hypotheses fitted the observed data, establishing the non-uniform distribution of these events.  相似文献   

13.
An in vivo system for differentially stained sister chromatids by incorporating 5' Bromo 2' deoxyuridine at two consecutive round of DNA replication has been developed in C. punctatus. The base line developed frequency of sister chromatid exchanges (SCEs) was found to be 0.038 SCE/chromosome. This low baseline frequency of SCEs could be useful in detecting genotoxicity of pollutants in aquatic medium.  相似文献   

14.
Although mature mammalian sperm are incapable of DNA repair, repair of damaged sperm DNA can occur after fertilization, as the sperm head decondenses and forms the male pronucleus. To quantify the cytogenetic effects of damage to sperm DNA we adapted the sister-chromatid exchange (SCE) test for use in early mouse embryos. After ultraviolet (UV) irradiation of sperm, eggs were fertilized in vitro and cultured for 2 cell cycles in medium containing fluorodeoxyuridine and bromodeoxyuridine; chromosomes were then prepared for SCE analysis. We found that UV-induced SCEs could be detected at the second cleavage division, and that eggs of different strains showed different frequencies of SCEs when fertilized by damaged sperm of a single strain. These results may indicate strain-specific differences in DNA repair of UV-induced DNA lesions by the early mouse embryo.  相似文献   

15.
The existence of a high frequency of spontaneous sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) has thus far been supported by data on a small number of BS cell lines. To examine the cause of baseline SCEs more broadly, the frequencies of SCEs, as well as chromosomal aberrations (CAs) in 4 additional BS fibroblast strains were compared, under different assay and cell culture conditions, with those of normal cells in the range of approximately 0.9-90% 5-bromodeoxyuridine (BrdUrd) substitution into template DNA. SCEs at low levels of BrdUrd substitution were detected by an extremely sensitive immunofluorescent technique. From approximately 0.9% to 4.5% BrdUrd substitution, the SCE frequency in BS cells remained constant, at a level (40/cell) 8 times higher than that of normal cells. As BrdUrd substitution increased further, the SCE frequency in BS cells increased almost linearly, reaching 70-100 per cell at approximately 90% substitution, while the SCE increment in control fibroblasts was less than 5 per cell. Analysis of SCEs in 3 successive replication cycles similarly revealed that the SCE increment in BS cells depended on BrdUrd only at a high BrdUrd substitution level. In contrast to data on SCEs, CA induction by incorporated BrdUrd in BS cells was only slightly higher than that in normal cells. Thus, BS cells are extremely sensitive to BrdUrd for SCE induction, but much less so for CA induction.  相似文献   

16.
B Kaina  O Aurich 《Mutation research》1985,149(3):451-461
Chinese hamster V79 cells were pulse-treated (for 60 min) with various mutagens three, two or one cell cycles before fixation (treatment variants A, B and C, respectively) and the frequencies of induced SCEs were analysed and compared. The degree of increase in frequency of SCEs with dose in the treatment variants depended on the mutagen used. For the methylating agents MNU, MNNG and DMPNU, high yields of SCEs were obtained in the treatment variants A and B, and there was no difference in the efficiency with which these agents induced SCEs in these treatment variants. In the treatment variant C, however, no SCEs were induced with mutagen doses yielding a linear increase in SCE frequency in treatment variants A and B. A slight increase in SCE frequency in treatment variant C was observed only when relatively high doses of MNU or MNNG were applied. Like the above agents, EMS, ENU and MMS induced more SCEs in treatment variants A and B than in C, but for these agents treatment variant B was most effective and SCEs were induced over the entire dose range, also in treatment variant C. As opposed to the methylating and ethylating agents, MMC induced SCEs with high efficiency when treatment occurred one or two generations prior to fixation. There was no difference in SCE frequency between these treatment variants. MMC was completely ineffective for the induction of SCEs when treatment occurred three generations before fixation. The unexpectedly low SCE frequencies induced by the methylating and ethylating agents when treatment occurred one generation before fixation were not due to the exposure of cells to BrdU prior to mutagen treatment. From the results obtained, it is concluded that DNA methylation and ethylation lesions give rise to SCEs only with very low probability during the replication cycle after the lesion's induction, and that subsequent lesions produced during or after replication of the methylated or ethylated template (secondary lesions) are of prime importance for SCE formation after alkylation. For MMC, however, primary lesions seem to be most important for SCE induction.  相似文献   

17.
狄少杰  刘凌云 《遗传学报》1992,19(3):212-220
应用IdU-毛玉米油体内SCE技术,以不同剂量的典型诱变剂MMC和CP对70尾黄鳝的脾、肾、血淋巴细胞进行了体内诱发SCE敏感性测试。结果:三种细胞的染色体SCE自发频率均较低,不同剂量MMC和CP诱发黄鳝三种细胞SCE频率均较对照组显著增加。诱变剂剂量与诱发SCE频率呈线性关系。三种细胞染色体SCE对MMC和CP的敏感性次序为肾>脾>血淋巴细胞。与几种鱼和其它动物比较,黄鳝三种细胞的SCE自发频率均较低,对MMC和CP诱发SCE的敏感性均较高,因此认为黄鳝可作为较理想的体内SCE检测系统。  相似文献   

18.
The fluorescence-plus-Giemsa (FPG) technique for analysis of sister chromatid exchange (SCE) is widely used as an assay for mutagenic carcinogens. There is very little information, however, on whether incorporation of the bromodeoxyuridine (BrdU) necessary for visualization of SCEs affects the sensitivity of the SCE test system to different chemical agents. We have investigated the effect of BrdU incorporation on SCE induction by labeling cells with BrdU for either the first cell cycle or the first and second cell cycles. The cells were then treated with bleomycin, which produces DNA strand breakage; proflavine, which intercalates into DNA; mitomycin C, which produces monoadducts and DNA crosslinks; or aphidicolin, which inhibits DNA polymerase . Chemicals were added before BrdU exposure or during the first, second, or both cell cycles. Only mitomycin C, which induces long-lived lesions, elevated the SCE frequency when cells were treated before BrdU labeling. When bleomycin, proflavine, or mitomycin C was present concurrently with BrdU, the frequency of SCEs was increased independently of the BrdU labeling protocol. Aphidicolin, on the other hand, induced more SCEs when present for the second cell cycle, when DNA replicates on a template DNA strand containing BrdU. We also examined the induction of SCEs in the first cell cycle (twins) and in the second cell cycle (singles) after continuous treatment of cells with BrdU and the test chemicals. Only aphidicolin increased SCE frequency in the second cell cycle. These results indicate that aphidicolin, but not bleomycin, proflavine, or mitomycin C, affects BrdU-substituted DNA and unsubstituted DNA differently. This type of interaction should be taken into consideration when the SCE test is used as an assay system.  相似文献   

19.
Germinated seeds ofVicia faba were continuously irradiated at low dose rate of gamma rays (0.05 Gy h-1) up to a total accumulated dose of 2 Gy. The FPG (fluorescence plus Giemsa) technique of differential chromatid staining was used to monitor the frequency of sister chromatid exchanges (SCEs) in irradiated root tip meristem cells. The results of the experiments have demonstrated that SCE frequency is raised by continuous gamma irradiation only in plant cells containing BrdU in the chromosomal DNA. No effect concerning SCE formation was recorded at continuous irradiation of meristematic cells of Vicia faba with native, i. e. BrdU-nonsubstituted, DNA. In contrast to SCEs, a significant increase was found in the yield of chromosomal aberrations in all variants of irradiation.  相似文献   

20.
The REP mutagenesis protocol, which involves the replication of 5-bromouracil (BrUra)-substituted DNA in the presence of deoxyribonucleoside triphosphate (dNTP) pool imbalance, has been shown to induce both mutations and sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells. However, when a Syrian hamster melanoma-derived cell line, called 2E, which was selected for its ability to replace all of the thymine residues in DNA with BrUra, was subjected to the REP mutagenesis protocol, the correlation between the induction of mutations and SCEs was no longer observed. The 2E cells were found to be much more sensitive to the induction of mutations by REP mutagenesis than were the CHO cells. This increased sensitivity to REP mutagenesis was found to correlate with increased perturbations of the dNTP pools that have been shown to be involved in the mutagenic mechanism of this protocol. In contrast, when the induction of SCEs by the REP protocol was measured, it was found that although a baseline level of SCEs was detected in 2E cells, no significant induction of SCEs due to dNTP pool perturbation was observed. It was shown that high levels of SCEs were readily induced in 2E cells by other agents, e.g. mitomycin C. A model, which discusses the fate of mismatched bases thought to be generated by the REP mutagenesis protocol as the determining factor for the induction of mutations of SCEs, is proposed to explain the uncoupling of mutagenesis and SCE induction in 2E cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号